AD-A156 698  POLAR HDTIONS MERSUREHENT STUDY(U) HONEVHELL SVSTENS
AND RESEARCH CENTER MINNEAPOLIS MN J HHNSE ET _AL.
SEP 84 84SRC41 AFGL-TR-84-8261 F19628-83-C 8183

UNCLASSIFIED 8/5




A oy gl e An3 a B et

o
e
A

! —

. OH N o [ee] @
< b A L4
! & o 2____ - Q R
= = — 2
= 5 2
Ol o~ W
o~ 3._ m g -
13 . = wn

O of of g 4 — =
<l of 3| EEE w
thhn—l—-_hu._u —_ 386
—— ? 2
A
ol —m « = ¢
. . W s

o
—— —— oS <
— =_ = g z

.
SarTeTew G T P B 5 2 Sl DRI . AT L AT, RS R I ;|
T ™. i A Y o ., p e X \hu .nA.- r ..... ...... ....- -..-—-...-.». .-..m ; .N. .,-—\ ¥ .W‘-'...h.u 4..-.b.b.L...~..P..L.|..»




.

AFGL-TR-84-0261

POLAR MOTIONS MEASUREMENT STUDY

Joel Hanse
Werner H. Egli
Mario Ignagni

Honeywell Systems and Research Center
2600 Ridgway Parkway, PO Box 312
Minneapolis, Minnesota 55440

inal Report
May 1983 - July 1984

AD-AI52670

September 1984

(]

~ DTS FiLE copy

AJR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
INITED STATES AIR FORCE

HANSCOM AFB, MASSACHUSETTS 01731

AN "0

DALSRAR 20 S0 S0 b o {
ML D

L4

TR

) Cmt .
" '.-" - -.L5 P I N A

Y it A A AN i ST O S A 0 e I S M B Wt W R
- > ™ . e

REPROOOEED AT &N

AR 55 e ;
PN 2R

o

Approved for public release; distribution unlimited

P

g g
' "

s
A;j}a —
o A

: 1
L
S
N
Y
» ll
ﬂ:‘
.‘}1

02 15 104 pu




LIl peai sans denih swes o A A LA I Caoaruin’ abar VMU HNE i o o NI s A A e W S T T TP
LG.V.( PO VLTI W a ™ e e v

REVRODOB AT BV - K02

~ CONTRACTOR REPCRTS <

This technical report has been reviewed and is approved for publication.
X - ,
< -;74’/, L
‘\/ . E/ 4 /9“'11

Contract Manager hief, Geodesy & Gravity Branch

FOR THE COMMANDER

D

Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requesters may obtain additional copies from the Defense Technical o
Information Center. &il others should apply to the National Technical S
Information Service. .

If your address has changed, or 1if you wish to be removed from the mailing
l1ist, or if the addressee is no longer employed by your organization, please

notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintainiag
a current mailing list.

~
-

T
P
I

b

h o i wliP Bm A na vl
DA AR

DA Und

e
I

hartn S S0 PN 200
NOMAO) A SUR A A MM Y
» ) .' N N
. ,

L g

g
T

14

y

4

y

A A .

. - - - . - -
PR Y A . - . - . . B
DR 'n"""-'q:". ATV Y PRI W WRE U S ST gl U W P B 0 S S oy
" TR P Rt B DV S WL




rmwwwwmwwmmmvv‘*vv e S S o < B W e " e ]

T ¥ W ¥ W ¥ FTEEENY § W

-

T ey v T oy Y™

[N _andih i md ol ad M A 4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOV'T ACCESSION NUMBER [ 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR-84~-0261 ”@ é qﬂ
4. TITLE (AND SUBTITLE) 5. TYPE OF REPORT/PERIOD COVERED
Polar Motions Measurement Study Final Report
May 1983 to Ju
6. PERFORMING ORG. REPORT NUMBER
84SRC41 -
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(S)

Dr. Joel Hanse, Werner H. Egli, and

Mario Ignagni Contract No. F19628-83-C-0103

9. PERFORMING ORGANIZATIONS NAME/ADDRESS
Honeywell Systems and Research Center 62101F
2600 Ridgway Parkway, PO Box 312 3201DMAN

- Minneapolis, Minnesota 55440

10. PROGRAM ELEMENT,PROJECT,TASK AREA
& WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME/ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory September 1984

Hanscom AFB, Massachusetts 01731 13. NUMBER OF PAGES
Monitor/ Robert I1iff/LWG 119
14. MONITORING AGENCY NAME/ADDRESS (IF DIFFERENT FROM CONT, OFF)) 15. SECURITY CLASSIFIiCATION (OF THIS REPORT }
Unclassified

15a. DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (OF THIS REPORT)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN B8LOCK 20, IF DIFFERENT FROM REPORT)

¥(/11 A3 891-anH 7

18. SUPPLEMENTARY NOTES

=
P
.

¥3. KEY WORDS ( CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

crustal motion. subarc-second laser gyro )
earth spin axis deviation, measurement ring laser gyro, _
northfinder - polar axis deviation .

J ,/ \\

WACT (CONTINUE ON REVERSE SIOE IF NECESSARY AND TOENTIFY BY BLOCK NUMBER)
~In this report we analyze the feasibility of subarc-second measurement of earth crust
warp and/or earth spin axis deviation, in less than one day, using ring laser gyroscopes
and accelerometers and/or tiltmeters. It is marginally feasible, using laser gyros
equivalent to the Honeywell GG1389, either unidirectionally carouseled or with enhance-
ment equivalent to Honeywell closed-loop lockin correction (CLIC). Experimental results
on the GG1389 show that input axis stability is more than adequate, and that its
carouseled or CLIC-enhanced random drift and output resolution suffice marginally. - . .4

{continued)

DD "%, 1473  €0iTION OF 1 NOV 55 15 OBSOLETE UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

>.-. PRt g B S
e e e e NN
o

RS

)
Rt
Mo




e N L W T G I G W R R N O T T P ™ N T T

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (NHEN DATA ENTERED)
20. (continued)
M !

- lDesign and build of a one-axis feasibility demonstrator is recommended, using one CLIC-
enhanced GG1389 ring laser gyro, two state-of-the-art tiltmeters, an Ultradex indexer,
and a Hewlett-Packard micro-computer._-, ../ fou,,., . -

A /./)—v‘ s deg% N
- )
e
u’j
o
C
-
h
e
¢ UNCLASSIFIED
‘p SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)
r:

e -

A 2 em o . o~ x.asE A



Mv—w-v-v-v"'-uw.“nr.r-r.- i il "Rl i e i i o g Bt T T T T GV WY e e W
}

i

!

:

1

i FOREWORD

I This report describes the Polar Motions Measurement Study applied research task

done by Honeywell Systems and Research Center for the Air Force Geophysics
1 Laboratory, under Contract No. F19628-83-C-0103.
' Publication of this report does not constitute approval by the Air Force
Geophysics Laboratory of the findings and/or conclusions contained herein.

[ This report is published solely to stimulate the free exchange of ideas and

; information,
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SECTION 1

INTRODUCTION AND SUMMARY

This 15-month applied research program was aimed at determining the feasibility
of making subarc—second quality measurements of earth crustal deviation and

earth polar axis wander using ring laser gyro (RLG) based systems.

The program comprised analyses of the performance of two selected system
configurations and rate table laser gyro testing. This final report describes
the work done and the results obtained, presents conclusions on the feasibility
of making subarc-second measurements of earth polar axis (EPA)/crustal

deviations, and frames recommendations for further work.

The two configurations selected consisted of a three-axis navigator system,
using three laser gyros, three accelerometers, and compound gimballing? and a

one—axis system, comprising one laser gyro, two tiltmeters, and indexatiomn to

point the gyro altermately east and west.

The laser gyro selected for both the amalyses and the testing phases of this

program was the Honeywell GG1389 gyro., This state—of-the-art gyro is probably I
the finest in the world.

Preliminary analysis showed that it is impossible to distinguish earth crustal
deviation around the vertical from EPA wander along the east-west axis, using

self-contained inertial measurements.

Preliminary calculations based on GG1389 gyros with computer—-driven random
drift reduction showed that, in a kinematically benign environment, combined

crustal deviation and polar axis east-west wander could be determined with

subarc-second accuracy over less than 24 hr,
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Based on these preliminary results, we defined a reasonable performance gosal:
determine the 16-hr average value of combined earth crustal deviation and EPA
deviation, within 0.2 arc—sec rms, over a 16-hr period, in a benign

environment,.

Using covariance analysis as needed, a linear error propagation model, and
known and extrapolated component characteristics, our analyses showed that the
simple one—axis system should perform as well as the three—axis navigator
system, and that both could come close to reaching the performance goal. Rate
table tests on Honeywell GG1389 RLGs showed that this gyro’s performance is now
almost compatible with the performance goal. The crucial characteristics are

random drift and input axis stability.

The random drift was about 0.000045°/rt-hr, when operated in the scale-factor
mode (i.e,, continuously rotated without dithering). The input axis stability
ranged from 0.004 to 0.04 arc-sec, relative to the gyro body structure, and

from 0.25 to 0.90 arc-sec across removals and remountings of the gyros.

The low random drift performance could be retained when operating in the
dithered mode by using a real-time computer—controlled laser gyro random drift
improvement technique, called CLIC, invented by Honeywell. Although still not
operative under general input rate environments, CLIC will reliably improve
dithered laser gyro random drift under benign enviromments, down to near

quantum limited performance.

It is reasonable to suppose that careful design of an indexed system should
improve the input axis stability, from the above 0.25 to 0.90 arc-sec
mount/remount value, down towards the 0.04 arc-sec intrinsic value. This could
be achieved by improving the quality of the mounting geometry, and/or by

directly measuring the mounting misalignment and compensating the system

output.
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The tiltmeters used in the one—axis system would contribute negligible added

v‘."‘

error to that from gyro random drift., Tiltmeters are readily manufactured with

v
PR

subarc—~second resolution and mul ti~hour stability. In the three—axis
navigator, the accelerometers would make a larger error contribution (it is
more difficult to make ultrasenmsitive and ultrastable accels than tiltmeters),

but still minor compared to that from the gyros.

Considering the foregoing results and arguments, we conclude that it is
feasible to make subarc-second measurements of combined EPA deviation and earth
crustal rotational displacements, over less than one day, using a Rlﬁ—based

system, in a configuration as simple as the one—gyro-plus—two—tiltmeter device.

We recommend that the Air Force Geophysics Laboratory (AFGL) design and build a
one—axis demonstrator unit, as described herein, to be tested by AFGL under
field conditions, as a prelude to designing and building a more elaborate unit

with all features needed to function as an autonomous transportable field model

sensor,
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SECTION 2

PRELIMINARY STUDIES

ASSUMPTIONS

We defined the set of assumptions under which the study Yonld proceed, as

listed below.

Rigid-earth geography: invariant distances between all surface
features recognized as fixed in the everyday semse, Terrains such as
glaciers, icefloes, etc., excluded. Intercontinental drifts considered

negligible,

Despite the rigidity as defined above, local short-range twist
deformations occur. These are to be determined to within subarc-second

accuracy, over less than one day.

Gravity vector at any location is constant, expressed in a geographic

reference frame affixed to the rigid earth.

Earth polar spin axis will deviste from nominal orientation, as seen in
rigid-earth reference frame. This deviation is to be determined with
subarc—second accuracy over less than a day. Polar axis wander during

the measurement period is negligible.

Crustal twist and polar axis deviation to be determined using a
substantially self-contained device (e.g., without need for star shots,

triangulation, etc.).

Benign environment: fixed position, zero velocity, and zero kinematic

acceleration, all specific force is gravitational,
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CONFIGURATIONS AND PRINCIPLES OF OPERATION

We selected two system configurations for study. One of these was a
high—precision three—axis inertial navigator, with three RLGs and three
accelerometers, The other was a stripped system, designed to exploit the
advantages of operation under ultra-benign kinematic enviromnment. It conmsists
of a single gyro, whose input axis lies along nominal east-west, and two
tiltmeters, which measure tilt around the north-south and the east-west axes,
with 1800 indexing around nominal vertical, to enable bias cancellation. The
principle behind both systems is to define earth crustal twist and EPA
deviation in terms of a reference frame defined by the local vertical and the
nominal EPA,

The accels (or tiltmeters) define the local vertical (umit g-vector) as seen in
the body frame of the device. The angle sensor(s) definme the total rotation
vector (earth spin + body rate), also as seen in the body frame. North is
defined as lying along the horizontal component of earth spin, which is
nominally of value E*cos(LT), where E is full earth rate (about 15°/hr), and LT

is latitude.

Body tilt around the north-south axis through an angle A(NS) will add a spin
component along east—west of value E*sin(LT)*A(NS), comprising the rotated
vertical component of earth spin. This will deflect the total spin vector
east-westwards through an angle of (E®*sin(LT)®A(NS))/(E®cos(LT)), =
A(NS)*tan(LT). This is, of course, easily corrected for by using the
north-south tilt angle, A(NS), which is arrived at by interpreting the

accel/tiltmeter readings.
Body rate around the east-west axis of value R(EW) will sum vectorially with

the earth spin vector to produce a total spin vector whose horizontal compoment

is deviated east/westwards from north, through an angle of R(EW)/(E®*cos(LT)).

.....
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It will also rotate the sensed local vertical at rate R(EW) around east-west.
This can be seen in the rate of change of the accel signals, and thus east-west

tilt rate can also be corrected for.

However, deviation in the horizontal component of earth rate cannot be detected
when using only the g-vector in addition to earth rate. The effect of, say, a

1 arc-sec rotation of the horizontal part of earth rate, from true north to

north + 1 arc—sec east, cannot be distinguished from the effect of a rotation
of the body on which the gyro is mounted, through an angle of 1 arc-sec

counterclockwise around the vertical.

This is the distinguishability problem: how does one determine EPA deviation,

while using the EPA as one '"’'leg’’ of the reference frame in which the

deviation is to be expressed? (The other '’leg’’ is the local vertical.)
Obviously, the only detectable kind of EPA deviation would be that causing a ]
change in the angle between the EPA and vertical, i.e., meridional deviation.

East-west deviation would be undetectable,

BASIC ANALYSIS OF SYSTEM OPERATION

Ao B g .

L

Let the esrth spin rate vector, including deviation, be demoted:

e =E+ d,

where:

deviated earth spin rate vector

nominal earth spin rate vector

deviation vector, whose direction denotes the axis, and whose magnitude

denotes the amount of the spin rate deviation

P
P RERE]
[N T ]
P ]

Let the crustal warp be denoted by & small rotation vector, a, whose direction

 § represents the axis, and whose magnitude represents the angle of warp. Let the l
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crustal warp rate be denoted as the rotation rate vector, p, whose direction

represents the axis, and whose magnitude denotes the amount of the warp rate,

Rigid—earth coordinates are defined in terms of unit vectors i alomg east, j

along north, and k along the upward-vertical. The nominal earth-spin, E, is

expressed as

<]
"

R*(j%cos(L) + k®sin(L))

where:

nominal spin rate (about 15.04107°/hr)

™
[]

nominal latitude

Similarly, we denote the warp angle vector, a, as

a = i®al + j*a2 + k*a3

the warp rate vector, p, 8s

p = i®*pl + j*p2 + k*p3

and the earth spin rate deviation, d, as

d = i®*dl + j*d2 + k*d3

Further assume that the environment is so benign that, averaged over the period
of observation, all that the accels sense are compoments of the gravity vector,
seen along the sensing axes of the accels. Then, we can substitute tiltmeters
for the accels. The tiltmeters will simply (and sufficiently) inmdicate the
direction only (mo magnitude) of the gravity vector, and they will do so more

accurately than accels would. Now suppose that the following quantities are
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determined over the period of measurement, as perceived in the crustally warped

body azxes:
Average net sensed rotation rate, e
Average sensed unit gravity vector, g .
Average rate of change of sensed gravity vector, g’
By simple kinematics, putting the true value of the gravity vector equal to k:
e=E+d+p+azxe6E,
g =k+axk
g'=pxk
where x denotes the vector cross—product operator.
Substituting the vectorial component representations for E, d, p, and a, we

get:

e = i*(R*(a2®sin(L) - a3®*cos(L)) + d1 + pl)
+ j*(d2 + p2 - R*al®sin(L))
+ k*(d3 + p3 + R*al®cos(L))

g = i®a2 - j*al + k

g' = i*p2 - j*pl

The components seen along the three axes i, j, and k are, for the rate sensing

observation:

el = R*(a2%sin(L) - a3®*cos(L)) + d1 + pl
02 = d2 + p2 - R*al®sin(L)
e3 = d3 + p3 + R*sl®cos(L)
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for the tilt observations:
8l = a2
g2 = -al
g3 =1
and for the tilt-rate observations:
g’'l = p2
g§'2 = -pl

$'3 = zero

From these, we get the partial set of solutions:

al = -32
a2 = g1
pl = —g'2
p2 = 'l

Substituting in the rate-sensing observations, we get:

dl - Re*a3®cos(L) = el - Regle®sin(L) + g'2
d2 = 2 - Reg2*sin(l) - g'l
d3 + p3 = 3 + Reg2%cos(L)

This shows that we can determine al, a2, pl, p2, and d2, but that we can only
determine d3 and p3 in the combination d3+p3, and dl and a3 in the combination
d1-R*a3®%cos(L). In some situations, we may know a priori that the vertical
axis conpoﬁbnt, p3, of the warp rate vector, p, is zero. Then, d3 can also be
determined, but there remains the indistinguishability between the ecast-west

component of earth spin vector wander, d1, and the vertical axis componeant of

BCRARAEE LA
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crustal warp rotation, a3. Hence, inertial measurements don’t suffice to
define the deviation of the earth spim vector, nor the local crustal rotational
warp. Therefore, we cannot use inertial measurements alone to orient to the

earth—-fixed reference frame, , i
RESOLUTION OF DISTINGUISHABILITY 1

Within the constraint of avoiding the use of astromomical scale fixes, such as
lunar laser ranging, star shots, etc,, there are three ways of dealing with k
this problem., One of these is to use a high—quality theodolite, affizxed to the
device to be oriented, and landmark(s) at a sufficient distance from the
viewing point, in the horizon plame. A sufficient distance means far enough

away so that effects of landmark crustal rotation are attenuated to zero (but ‘
not so far as to give excessive refraction errors). How far remains to be
determined, as a function of what'’s needed and what's possible. Clearly, the
wall of a small chamber housing the apparatus would be a poor landmark?®
distances of several bundred meters would probably be needed. This would
enable determination of crustal rotation and rotation rate around the vertical

3 axis (a3 and p3, respectively), to the sccuracy of the theodolite-operator

i system.

The average rotation angle around the vertical would be the average of some

1
;’ number of equi-time-spaced readings of azimuthal deviation, taken over the 5
: observation period. The average rotation rate around the vertical would, in ]
principal, be the difference between an initial azimuthal deviation reading and ‘

.~ a final one, divided by the time difference between the two readings. In 2
'f practice, this may be refined by best—fitting to all the azimuthal deviation i
L: readings. The accuracy of individusl theodolite fixes is about 1 arc-sec, 4
tj rms. If this is random independent ’'’white noise’’ error, 100 successive fixes ’ ‘
? would average the error down to 0.1 arc-sec rms. Very likely, ome would have i
{ﬁ to take successive fizxes incessantly. Well-correlated fix error could be a ;
;:: major problem. :
: s
|
2 10 \:
|
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The expected plethora of theodolite fixes would, of course, be passed into a
computer. However, this method could still be very labor-intensive, because of
the multitude of readings to be taken, and because of the indexing, plunging,
and what-have-you that accompanies theodolite readings, in order to cancel some
of the systematic errors. Some of this could doubtless be automated, but there
would still be demands on the operator. For these reasons, and because of the
eventual environment the system might be required to operate in, this approach

was dropped from further comsideration.

The second method of dealing with the distinguishability problem is to use
independently determined earth spin vector values. Then, we know the values of

dl, d2, and d3, and we get a3 and p3 by:

= (dl - el + Regl®*sin(L) ~ g’'2)/(R*cos(L))
p3 = 63 + Reg2®*cos(L) -d3

The earth spin vector is a world constant., So, it can be determined at any
convenient location and its value then transmitted to a multitude of sites.
The value is then easily transformed into & local coordinate system
expression. Specifically, let the deviation be expressed as the vectorial sum
of a polar deviation (i.e., a deviastion in magnitude), DM, a deviation along
the Greenwich meridian, DG, and a deviation along the 90° east meridian, DE,
Then, at latitude LN north and longitude LE east, the locally-seen earth spin

deviation vector is

d = i*(DG®*sin(LE) + DE®*cos(LE))
+ j*(DM®*cos(LN) + sin(LN)*(DG*cos(LE) — DE*sin(LE)))
+ k*(DM®*sin(ILN) - cos(LN)*(DG*cos(LE) - DE®sin(LE)))

11

- - - T B T I . ‘- A TR R
T T O S N S Ay S I N SRR Y
T e I R LUt B

.. . o
‘*"-LJ.A..AA P \ PPV, _AAM




m, TP Rt i T & e Sees g 4 ek aarit gl Al S Bk et un b It dht ol ol
-~ PRt s aee gew eo-u ama ace g an) ——
" e

K gl

Py "L

L

A B — -
KPS N v e e

NN e

%
*

L s
e

P AN AN

e T T VT T w s
P TR T

i.e.,

dl = DG*sin(LE) + DE®cos(LE) ‘
d2 = DM®cos(LN) + sin(LN)®*(DG*cos(LE) ~ DE®sin(LE))
d3 = DM®sin(LN) - cos(LN)*(DG®*cos(LE) - DE®*sin(LE))

In principle, measuring the exact earth spin vector at a central location is no
easier than doing it at a multitude of sites. But, it may be possible to find
locations where the earth crustal warp is essentially zero, e.g., on some
special underground bedrock granite formation, far removed from seismic
epicenters. These determinations could be intermittently checked by star
sightings, whenever the ’'’seeing’'’ is fevorable. The assumption is that some
special earth-spin-measurement laboratory can be set up at some favorable

location(s) to provide continuous values good to within 0.1 arc-sec rms,

There is a third possibility, suggested by our perception of the ultimate
application by the customer (AFGL). It appears that the system counld
eventually be deployed at a large number of sites, N, with measurements taken
fairly frequently. Furthermore, it would be reasonable to assume that the
crustal warps at all N sites would constitute a zero—mean random independent
set. Consequently, the multi-site mean crustal rotation around vertical
should be zero, with an rms deviation around that value of magnitude 1/SQRT(N)
times the rms value of individual site crustal rotations around the multi-site
mean, If so, the individual determinations of site crustal rotation plus earth
axis deviation should, upon multi-site averaging, produce an estimate of earth
axis deviation, corrupted by 1/SQRT(N) times the rms crustal deviation.
Actuslly, the computation would be somewhat more complex than the above,
especially if the sites were well separated on the earth surface. In that
case, the averaging would have to include the fact that earth spin axis
deviation will be seen differently at each of the N locations., It would, in

fact, be a straightforward least-squares best-fit procedure.

12
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DUAL-FREFDOM STRAPDOWN CONCEPT

Northfinding/leveling is performed routinely by all inertial navigation systems
as a preliminary to entering the navigation phase, Accuracy of northfinding is
typically about 1 mrad, achieved in 15 min. The major factors affecting

accuracy are gyro biases (fixed and random) and accelerometer biases.

In order to enhance performance, we may rotate the inertial sensor assembly
(ISA) about ome or more axes, called carouseling. By so doing, the effect of
gyro and accelerometer fixed biases may be partially or totally eliminated,

depending on the number of axes of carouseling,

In a pure strapdown system (see Figure 1a), attitude error is essentially the
time integral of all gyro error terms. In order to reduce the error, the
inertial sensors may be mounted to & rotating base, rather than to a fixed one
(see Figure 1b). Partial commutation or averaging of systematic gyro errors
results, There is a reduced attitude error for axes in the plane of rotationm,
but none for the the out-of-plame ome. (It does not help to dispose the three

gyros so that all three gyro axes partske of the rotation.)

Fur ther attenuation is provided by a dual-freedom strapdown approach, in which
the plane of the rotating turntable is itself being rotated (see Figure 1c).
If both rotational axes are properly controlled, it is possible to get almost
bounded attitude errors over very long time periods, due to comstant gyro
errors such as bias, scale factor error, and misalignment. There is, however,

no reduction of the error due to dithered laser gyro random walk,

Having thus dealt with systematic error sources, the final step is to rate-bias
the gyros to eliminate random walk, The three gyros are maintained in
uninterrupted unidi rectional rotation, rather than being dithered in periodic
motion. This eliminates the lock-in error increments that occur as the gyro

rotation rate goes through zero twice per dither cycle, and hence eliminates

13
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! the resultant random walk. To do this on the dual-freedom approach, we elevate ‘
! the gyro input axes above the equatorial plane, so that all three gyros receive B
] -
. a portion of the angular rate about the inner axis, and we slip-ring the inner
‘ )
. 1
} axis, to allow continuous rotation. J
F To summarize, pure strapdown is the simplest approach, but has the greatest o
t attitude error growth, The single-— and dual-freedom approaches attenuate,

respectively, some and all of the attitude error due to fixed gyro errors, y
without amy reduction of that part due to random walk. Finslly, dual-freedom ?
strapdown with rate-biasing eliminates virtually all errors. This is the 3

configuration that we have selected for analysis and simulation.

DUAL-FREEDOM STRAPDOWN ROTATIONAL STRATEGY .

1
Appendix A shows that two conditions suffice to enable successful dual-freedom j
strapdown rotational strategy “

1. The inner axis rate is an integer multiple of the outer axis rate.

2. The outer axis reverses direction at 360° traverse intervals,

These ensure the commutation of gyro and accelerometer bias, scale factor, and

s misalignment errors.

b

é The Appendix A analysis assumed that the outer axis can reverse direction

L instantaneously, and that there are no nonlinearity errors in the sensor

b

& outputs, But, the analysis can be extended by expressing all quantities

ﬂ appearing in Appendix A tables as Fourier series over ome cycle of the outer

5 axis, This leads to a refined dual-axis rotational profile that gives periodic

L ) cancellation of the following sensor errors.
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¢ gyro bias errors

® gyro linear scale factor errors

® gyro misalignment errors

® gyro scale factor asymmetry and nonlinearity errors

® accelerometer bias errors

¢ accelerometer linear scale factor errors

® some accelerometer scale—factor nonlinearity errors (all odd powers, Oth
and 2nd even powers only)

® accelerometer misalignment errors

An example of error-cancelling gimbal sngle profiles is shown in Figure 2. The
outer gimbal rates consist of zero rate segments, constant rate segments, and
ramp rate segments. More generally, error cancellation is provided when each

segment of the outer axis rate profile is symmetric about its midpoint.

OUTER AXIS RATE PROFILE AREA = 85°

L/ I\ [~\\ 0\

OUTER AXIS ANGLE PROFILE
180°

|
|
|
|
’/_ INNER AXIS RATE PROFILE | ] AREA = 180°
e
V77 A
7 )

Figure 2. Dual-Freedom Sensor Assembly Rotational Profile
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SECTION 3

SENSOR AND SYSTEM ERROR MODELS

GYRO RATE WHITE NOISE

The effect of rate white noise on system attitude error can be defined by the
simple model:
V= Cyn,
= CAns

where C and A are defined by:

C = transformation matrix from sensor reference axes to local-vertical
reference axes
A = transformation matrix from gyro axes to sensor reference axes

The covariance matrix of ¥ for equal intensity white noise im each gyro is

governed by:

P = CAATCIN

where:

P=EWyyT

and N is the gyro white noise spectral intensity.
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If, as is trequently the case, the matrix A is orthogonal, and since C is

orthogonal by definition, the covariance equation reduces to:
*
P=N
or:
P = Nt,
which is to say:
2 = Nt -
oy (3-1)

where t is the elapsed time. Therefore, rotation of the sensor assembly

(implicit in C) will do nothing to reduce the effect of the gyro white noise.

SENSOR QUANTIZATION

A thorough assessment of sensor quantization errors is givenm in Appendix C,
which defines a covariance-based model suitable for performance analysis
purposes. The essence of the quantization—induced error can be described more
simply by considering a single-axis rotational system. One finds that the gyro

quantization error leads to an attitude random walk error, which is defined by:
ay = waq(T/2)1/2¢1/2 (3-2)
where:
Oy = standard deviation of attitude error

@ = sensor assembly rotational rate

gq = standard deviation of the gyro quantization error

18
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T = attitude update interval
t = time .

and:

d
oq = PINTZ |
where P is the gyro pulse size,

A simplified analysis of the effect of accelerometer quantization leads to a

formula analogous to Equation 3-2 that defines a random walk error growth in

velocity.

P9

It is clear from Equation 3-2 that the random walk error is directly
proportional to rotation rate, and hence, is a major error contributor for

relatively high rotation rates. 3

PARAMETER VARIATION

The error cancellation properties associated with any rotational strategy are

LA N N 8.4

applicable only when the sensor errors are constant. In reality the seasor
biases, misalignments, etc., will randomly vary due to environmental and other

causes.

Three types of random sensor error variations are considered below.

1. First-order Gauss-Markov process, defined by the first—order stochastic

differential equation:

-+ Bik = n

et AR e s A Lo "

- vooaEm. . e e
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where:

k = random variation in the sensor error coefficient
n = white noise

B = 1/correlation time of Gauss—-Markov process

The power spectral density of the white noise input is chosen according

to:

Ny = 2B302

Ni = power spectral demsity of the white noise inmput

standard deviation of the steady—state sensor error variation

Q
]

A typical sample of a first-order Gauss—Markov time history is shown in
Figure 3a., The important feature is that, even for a one-hour
correlation time, the response shows significant high frequency

activity.
2. Second-order Gauss-Markov process, defined by:
¥+ 28k + P2k =1
2 2
where k is the error parameter variation and

By = 2.146/T,
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in which
Te = correlation time of the second-order Gauss—Markov process
The spectral density of the white noise fumctioa, n, is defined by

32
N2 = 4320

where, as before, o is the standard deviation of the steady-state sensor

error variation.

A typical time history for s second-order Gauss-Markov proce: 1s shown
in Figure 3b. Note that, with one-hour correlation time, the response
is essentially free of all of the high frequency variations that are so
prominent in the first-order Gauss-Markov process with the same

correlation time,
3. A third type of random sensor error parameter variatiom is definmed by:

k=1

ﬁf- which constitutes a random walk variation in the parameter. A sample
-

;fﬂ time history for a random walk parameter variation is showa in

&7_ Figure 3c. The spectral intensity of the white noise functiom, n, is
° defined by:

b N = (onr/60)

‘t;:l"if

g;' where oy, is the standard deviation of the parameter growth at one hour.
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COMPLIANCE-RELATED ERRORS

In a dual

g—induced

Attitude
by:

where:

&
L}

o
=
L}

—freedom strapdown system, rectified attitude drift may generated by

gyro input axis compliance effects.

error drift rate due to gyro input axis compliance mey be characterized

8
CoMa (3-3)

attitude error vector (with components along north-east-down (NED))
transformation matrix from a set of orthogonal sensor reference axes to
the NED frame

error in the transformation matrix from gyro input axes to the sensor

reference frame

nominal angular rate vector measured by the gyro triad

The nominal angular rate vector measured by the gyros is related to the nominal

angular r

according
8 .
o

where:

ate vector coordinatized in the orthogonal sensor reference axes

to:

-1r

"o e, (3-4)
nominal angular rate vector coordinmatized in orthogonal senmsor
reference axes

nominal transformation matrix from orthogonal semsor

reference axes to gyro imput sxes
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Since:
-l =1

therefore,

sl + MM N =0
[o] [+ [+]

and

M = —uosu’luo (3-5)

Substituting Equation 3-4 and Equation 3-§ in Equation 3-3 gives

v _ -1 r
¥ = —on sh et (3-6)

which is the basic attitude error equation.

To complete Equation 3-6, the following equations defining C and @f ;te defined,

CaCp ~CaSB Sa
C = Sp Cp 0 (3-7)
-SaCp SaSp Ca
r . . T
@ = (asinft acosft B) (3-8)

where:

a = outer gimbal angle

B = inner gimbal angle
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l For a gyro triad whose axes are nominally orthogonsl and coincident with the

sensor assembly reference axes:

Mg = I (3-9)

and the error in Myl can be expressed in gemeral by:

r -
o 5ay 8bg
Ml = | 3ay 0 5by (3-10)

8by 0

L&a3 i u

where da; and 6b; are the gyro input-axis misalignment angles.

Now assume that each misalignment angle error can be defined in terms of the three

components of gravity in the orthogonal sensor referemce frame according to:

i r r r ;

ba = kilAl + kiZAZ + ki3A3 (3-11) :
r r r

Bbi = milAi + niZAZ + ni3A3 (3-12) i

{

where the kij and mjj are compliance coefficients, and Ai. A;, and A§ are the

components of the gravity reaction acceleration, defined from Equation 3-7 by:

AT = -g(-SaCB SaSp Ca)T

. o —— A B__A_

P' where g is the acceleration due to gravity.

Substituting Equatioms 3-7, 3-8, 3-9, 3-10, 3-11, and 3-12 into Equation 3-6

yields an attitude error equation that takes the following form,

,.ﬁ
. -’
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'i ¥=£(a, B, 0 By K33, K12 oens P11, B2, aees B)

where:

! = (Wn \l', Wd)T
and all terms in the linear expansion have either a or ﬁ as a multiplier,

Each component of ¥ can be determined at the end of a complete gimbal period by
direct integration of ¥. 1In the process of doing this, one can easily eliminmate

terms involving a by inspection. For example, a term such as

f: dsinatcospt dt

is identically zero at the completion of every outer gimbal 360° traversal (of

duration T), while a term such as

f:B sinzﬂ dt

bhas a non-zero mean value at the end of each outer axis period.
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SECTION 4 |

SYSTEM ERROR STUDIES

ERROR PROPAGATION IN DUAL-FREEDOM SYSTEM

In a rotating system, error propagation depends on the nmature of the random

sensor errors, For example, consider the simplified block diagram shown in

Figure 4 for attitude error propagation in a single-freedom system. The

variance of the attitude error can be determined from:

2, gt
oL(t) = Nfow Te.0rae

ORI, Rl A ons

where:
w(t,t) = response of the system at time t to an impulse applied at time ¢
N = power spectral density of the white noise input
ai = variance of the attitude error

For the first-order Gauss—-Markov process, the impulse reponse function is given

by:

wit,t) = fzc.ﬁl(t-t)sinwtdt

and for the second-order Gauss—Markov process:

w(t,t) = f;(t-t)e-BZ(t-t)sinwtdt ﬂ

et

8

-

For the random walk process: B
t : -

wit,t) = fo U(t) sin wtdr 2

’

where U denotes the unit step function, =
27 -
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a. First-order Gauss—Markov process
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b. Second-order Gauss-Markov process

1 1 GYRO BIAS _ 1
" W% ‘™ ry i Snax [ = [— v
0 VARIATION

c. Random-walk process

= UNIT INTENSITY WHITE NOISE

n
o = STANDARD DEVIATION OF GYRO BIAS VARIATIONS IN STEADY STATE (GAUSS—MARKOV PROCESS)
w = ROTATION FREQUENCY

¥ = ATTITUDE ERROR

51 = 1/(CORRELATION TIME OF FIRST-ORDER GAUSS-MARKOV PROCESS)

g 2 ° 2.146/(CORRELATION TIME OF SECOND--ORDER GAUSS—-MARKOV PROCESS)

On, = STANDARD DEVIATION OF GYRO BIAS VARIATION AT 1 hr (RANDOM WALK PROCESS)

Figure 4. Attitude Error Propagation in a Rotational System

The asymptotic characteristics of the solutions can be established by carrying
out the integrations analytically and discarding all terms in the solution that
decay with time. The result is that the attitude error variances become

asymptotically equal to:

az = Dl(u)t/Z (first—-order Gauss—Markov) ’ (4-1)

02 = Dz(m)t/2 (second-order Gauss~Markov) (4-2)
where 91 (w) is the power spectral density of the first-order Gauss—Markov

process at the rotational frequency, w, and is defined by:
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- P (0) = ——2—
. 1 2 2
o By v o
*;ﬁ and Py (w) is the power spectral density of the second-order Gauss—Markov
\
- process at the rotational frequency, and is given by:
L 450’
i P, (0) =
g 2" (ﬁ§ + m2)2
f?i For the random walk parameter variation
ol = p_(a)t
f where:
_ 2,2
s ﬁr(m) = (ahr/60) /o (4-3)

It is seen, therefore, that all three processes lead to a random walk error
propagation tendency in attitude. It is also clear that, for the Gauss—Markov
processes, the variance of the random—walk compoment of attitude error is

O5H directly proportional to the amount of power in the process at the rotational
o frequency, w. Comparing #y and Py, the ratio of powers at the rotational

frequency is determined as

o 2, 2.2 2,22

g B (B + ) B, (B, +w")
ﬁl +w 2ﬁ2 252(B1+W )

[ ) For example, consider:

- By = 1/1800

o By = 2.146/1800

° w = 2n/60

29
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which yields the result that

91 (w) /Py (w) = 1799

Therefore, the standard deviation of the random walk component is greater by a
factor of J1799 = 42 .4 for the first-order Gauss—-Markov process compared to the

second-order Gauss—-Markov process for the example chosen.

Y o0

It is clear from Equations 4-1, 4-2, and 4-3 that each type of parameter

variation leads to a randomwalk in attitude., It can be shown that, for a

b Gauss—-Markov process of any order whatsoever, the attitude error growth is

defined by the general form:

Ny |

o= Dyle)t/2

where PN(w) is the power spectral demsity of the nth-order Gauss-Markov process
at the rotational frequency w. The implication is that the choice of a random
process for representing sensor varistions is not critical., It is important
only that the power at the rotational frequency have some meaningful value,

This is true for performance analyses and for Kalman filter design and

evaluation.

COVARIANCE ANALYSIS AND EKALMAN ESTIMATION

!

i
3
-3

M

1

Consider a dynmamic system whose behavior is defined by the following set of

discrete linear equations:

- .
" Xp = Pn Xp-1 + Bpmp (4-4) i
{ -
:T where: :
»; '-,
P: X = vector of states i
J n = vector of random (zero mean) noise sequences -
: 30
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P, = state transition matrix from (n-1)th to nth jterations

B, = noise distribtution matrix at the nth jteration

-
-
-
]

‘.-
=
o
-

2N
-

For a given © and B, the state X will have a time variation determined by the
particular noise sequence, n, and the initial condition, X,, which in general
is taken to be a randomly distributed quantity. Since the noise sequence, 1,
has‘an infinite number of realizations and the initial condition error can
assume an infinite number of values, the system of equations given by Equation
4-4 has an infinite number of solutions. Because this is true, attention must
be focused on the statistical behavior of Equation 4-4 rather than on specific

solutions.

The most natural and useful way of characterizing the behavior of Equation 4-4
is to compute the statistical parameters that define the bounds on the state

vector, X. The statistical bounds on the components of X are found by solving

the covariance matrix equation associated with Equation 4-4, which takes the

recursive form:
Pp =0y Ppg nnT + Bp Qp Bn'r (4-5)

where P is the state covariance matrix of the state vector, X, defined

PR NI ¥ PR Siny ae

explicitly by:
P = [p;;l] i
and
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in which E denotes the expectation operator. It is seen that the individual
variances of the components of X are defined by the diszgonal elements of P,

with the joint expectancies (cross—correlations) being defined by the

of f-diagonal elements of P. The matrix Q in Equation 4-5 is the covariance

matrix of the driving noise vector, n, which is defined by:
Q = [q;;]

and

qij = E(njny)

Suppose that the discrete process defined by Equation 4-4 represents the true
dynamic propagation characteristics of a given linear system. Suppose further
that at some time a measurement is made (using an external measuring device)
that allows a specific linear combination of the states to be directly

monitored. A generalized way of stating this in mathematical form is

Ym = HpX + & (4-6)
where:

Yn = vector of measurements at time t,

Hy = measurement matrix at time ty

{m = measurement noise vector applicable to mth measurement

and it is assumed, in the general case, that a number of independent

measurements may become available simul taneously.

Consider now the question of how ome could use the information introduced
through a series of measurements of the form given by Equation 4-6 to optimally
estimate the state X in a sequential fashion. This is the central problem

addressed by Ealman estimation theory, and has the following solution.
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After each measurement (of a sequence of measurements) is made, the estimate of

the state X is refreshed by the two—-step procedure:

iy =oe e e ) (4-7)
m m m-1 m-1
Qe =Re) + £ (¥ - 1R (¢ )) (4-8)
where:
AN _ . th
X (tm) = best estimate of vector X just prior to the m measurement

?(tm) = best estimate of vector X after incorporating the information
introduced by the nth measurement

state transition matrix spanning the time between the mth and

Pt ,t )
m ol th
(m-1) " measurements

= Kalman gain matrix at the nth measurement point

En
Yy = vector of measurements
Hp

= measurement (observation) matrix at mtl measurement

with K, defined by:

K =P H Y(HPH +R)! (4-9)
m mm mmm m
in which
P; = a priori error covariance matrix of the vector X

Rm = measurement error covariance matrix = E(&méz)

!

and the a priori error covariance matrix Py is computed by using Equation 4-5

over the period from the mtR to (m—1)th measurements.
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After processing of the mth measurement, the error covariance matrix of the
state X is modified to reflect the benmefit of incorporating the new information

introduced by the measurement, as follows.

Pln = (I - xmum)Pm (4-10)

"a posteriori” error covariance matrix. The form

and Py is referred to as the
given by Equation 4-10 is applicable when the Kalman filter is fully optimal;
that is, the filter is a full-state filter in which 21l components of X are
fully acounted for in the mathematic model, and further, are re—estimated after

each successive measurement is made availabdle.

Formulation of Dual-Freedom System Simulation

The northfinding process is assumed to take place in real-time (rather thar by
data post processing) via optimal estimation (Kalman filtering) techmiques.
The alignment Kalman filter is based on the fact that the reference origin of
the sensor assembly has zero velocity. Then, the velocity indicated by the

system becomes a measure of the alignment errors (azimuth and level).

A discrete error equation for expressing deviations in attitude and velocity

for the northfinding mode is given as (see Appendix B):

Y= Tpg *02 3 (4-11)

where Y is the vector of attitude and velocity error states defined by:

Y

(¥ VT (4-12)
in which:

¥ = attitude error vector

8V = velocity error vector
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and X is the vector of sensor errors, which are represented in genmeral by

second-order Gauss—-Markov processes:

Each component of the sensor bias vector, X, is defined by two first-order

differential equations according to (see Figure 4b):

X, v Bx =1 (4-14)

Ui + pzui =|4B2 n (4-15)

where n is a unit intensity white noise functionm, and
By = 2.146/(correlation time)

The vector X represents the short-term instability in the sensor error parameter
vector. Only the short—term instability is of importance. The constant
components of sensor error are dealt with by the error commutation properties
inherent in the sensor assembly rotational profile (see Figure 2). The single
exception is vertical drift rate, due to input-daxis compliance. Since this
effect is highly stable over time (based on experimental evidence), it is
assumed that, prior to northfinding, the vertical drift rate has been calibrated
and compensation provided. Alternatively, the vertical drift rate may be
fine~calibrated during the northfinding process by adding an additional state to
the Kalman filter, In either case, the effect of the vertical drift rate can be
made negligibly small.

Equations 4-11 through 4-15 describe the evolution of the error state. The

discrete uncorrelated process noise vector, g, is defined to include gyro random

walk and sensor quantization errors,
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The measurement equations for the northfinding process are defined by:

y1 = 8V + g (4-16)
yy = 8Vy + pa (4-17)
where:

Vi Y, = indicated velocity outputs of the navigation system along north

and east axes, respectively

6V1. 8V

2 errors in the north and east velocity components, respectively

Hyo By = measurement errors (spurious velocity components due to random

base motion effects)

Based on Equations 4-11 through 4-17, an alignment Kalman filter is defined. 1In
the present study, the Kalman filter update interval is chosen to be the same as
the period of the outer axis rotational profile (4 min). By so doing, the
achievable alignment accuracy becomes independent of any latent seasor
calibration errors. Only short-term instabilities in the sensor errors (as
defined by Equations 4-14 and 4-15) affect the accuracy of the alignment. By
enforcing this constraint, the computational requirements of the alignment

Kalman filter are greatly reduced, without loss of performance.

A set of 1o sensor errors that was assumed for assessing the performance of the
three—axis navigator approach is defined in Table 1. The gyro random walk
coefficient of .45 x 10~4 deg at 1 hr is based on experimental results obtained

for the Honeywell GG1389 laser gyro. The quantization l¢ errors are based on

the assumption of a uniform distribution for the quantization error, and the use
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TABLE 1. 1o ERRORS ASSUMED FOR THREE-AXIS SIMULATION

Gyro

Random walk = 0.000045°/rt~hr
Quantization = 0.022 arc-sec
Gyro bias short-term variation = 0,01°/ hr
Gyro scale factor short—term variation = 0.05 ppm
Gyro input axis misalignment short-term variation = 0.05
arc-sec
Accelerometer

Quantization = 0.0006 ft/sec

Accel bias short-term variation = 0,10 micro-g

Accel scale factor short-term variation = 0.5 ppm

Accel input axis misalignment short—term variation = 0.5
arc-sec

Other

Short-term translational base motion = 0.005 ft/sec

The short-term sensor errors are assumed to be second-order Gauss-Markov

the outer axis (4 min in this case).
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of a phase—lock loop to increase the resolution of the gyro output to 0.075

processes with a correlation time of 1 hr. However, the 1o values given in
Table 1 are not meant to imply bounded behavior. Rather, the intent is to

characterize their short-term variation over times comparable to the period of
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Results of Dusl-Freedom n m

The three—axis system covariance and error sensitivity analyses were first
framed around the assumption of using three GG1300 RIGs, with a complete set of
rms error parameter values assumed as below. Errors are assumed random
independent, and with Gaussian distributions, except for quantization errors,

which are assumed to be sumbounded, and to have triangular distributions.

Gyro: Honeywell GG1300 RLGs, in rate—biased mode (i.e., prolonged

unidirectional rotation)

Angle random walk 0.0001°/rt-hr
Quantization/spillover 0.03 arc-sec
Bias random walk 0.01°/hr-rt-hr
Scale factor random walk 0.05 ppm/rt-hr

Accelerometers: 3 Bell 11s, or equivalent

Pul se~-weight quantization 0.0006 ft/sec
Acceleration random walk 0.1 micro—-g's/rt-hr
Scale factor random walk 0.5 ppm/rt-hr

Input axis instability 0.5 arc—-sec/rt-hr

Bias errors are cancelled by carouseling around two indexation axes, over a
4-min cycle, Consequently, the system puts out updates of three-axis attitunde
15 times per hour. At each update, the system output is reset, by ’'‘reminding’’

the system computations that the system has undergone zero displacement over the

preceding 4 min, and has zero velocity.
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The reset process is clearly seem in Figure 5, which shows the evolution of mms
drift error around the north-south axis, as produced by computer simulations.

The error locus is the lower envelope, with an asymptotic value of about 0.08$

FW S = S

arc-sec. The simulation is quite similar for east-west axis drift. 1In
Figure 6, we see the simulation of vertical axzis drift error. This has an '
apparent asymptote of about 1.4 arc-sec. The drift is smaller around the

horizontal axes because the gyros are greatly belped by the tiltmeter aspect of

the accels. Horizontal axis drift is dominated by the accel quality and .
vertical axis drift by the gyro quality.

The Honeywell GG1300 RLG, on which the foregoing results were obtained, used to

be our best gyro. Now, we have the high-performance GG1389 RLG, with the
following characteristics:
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Figure 6. Simulated Vertical ms Error, Using GG1300s

Gyro: Honeywell GG1389 RLG, in rate-biased mode (i.e. prolonged

unindirectional rotationmn)

Angle random walk 0.000045°/ct-hr
Quantization/spillover 0.02 arc-sec

Bias random walk 0.01°/hr-rt-hr
Scale factor random walk 0.05 ppm/rt-hr
Input axis instability 0.05 arc—sec/zt-hr

We see from Figures 7 and 8 that the simulations show drift errors around the
east-west and north-south axes of about 0.075 arc-sec. This is about the same
as with GG1300s. As previously mentioned, this part of the drift is
accel-limited. In Figure 9 we see that drift around the vertical is
asymptotically 0.55 arc-sec: as could be expected, this gyro-limited term is

improved by going from the GG1300 to the GG1389, However, it is still too high
for a subarc-second system,
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1* Discussion of Simulation Results
;j:. The reason that the vertical axis drift is asymptotically bounded (rather than
. . being an unbounded random drift to match the unbounded random walk of the
) vertical component of the gyro outputs), is as follows: The vertical axis drift
';}; attempts to ‘‘tell’’ the system that the horizontal gyro senmsing plane is in
j unbounded rotation. If this were really so, then the direction of the
horizontal component of earth rate, as seen by the system, should also appear to
i} be unboundedly rotated. When this fails to occur, the system starts to
lii "*ignore’’ the vertical axis drift., The final result is a compromise between
:f‘ vertical axis random angle drift and horizontal plane angular rate white noise.
e
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this process tends to follow the law

o = N2 12

gyro random drift acting in the vertical direction,

error follows the 1law

oy = NL/2 ¢1/2

3 T o " Ty .Y LTy
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growth of error predicted by Equation 4-19 when:

1 1/2
172 =t
wcAt
e
or when
t = —i
w _CcA
e
For A = 459, this gives:

t = 19402 sec = 5.4 hr

The azimuth error is estimated via the two horizontal velocity components, and

¥ ®w cA
e
where
N = intensity of gyro white noise drift
. we = earth’s rotational rate (0.729 x 104 rad/sec)
¢ cA = cosine of latitude
Oy = lo error in estimated azimuth

Simul taneously, the azimuth error tends to grow due to the component of total

Therefore, the decay of error, as predicted by Equation 4-18, is equal to the
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(4-18)

This increase in azimuth

(4-19)
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This is reasonably close to the azimuth error convergence time constant seen in

Figure 9. The basic reason we see this irreducible azimuth error is that the
overall model included the possibility of azimuth drift over the measurement

period.

If one assumes that the system maintains an essentially fixed orientation
relative to north over an indefinite time, further accuracy of northfinding is
possible. A simple approach would be to average a series of northfinding
results, each obtained over some fairly short period of time (say about

1/4 hr). Then, the composite accuracy would be improved by a factor equal to
the square root of the total measurement time. If, as an example, 64
northfinding experiments were run, each 1/4 hr, then the composite accuracy

would be:

Ty = 1.3/4 = 0.32 arc-sec
This is the basis of the simplified one—~axis concept, measuring over a 16-hr
interval, Assuming constant orientation relative to north, the composite
accuracy of a sequence of northfindings would improve indefinitely. Thus, at 48

hr, the lo azimuth error would be 0.20 arc-sec, and so on.
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SECTION 5

ONE-AXIS SYSTEM STUDY

ERROR ANALYSIS

The results of the three—axis navigator system studies suggest that it is
pointless to measure rate around the vertical axis., We need a different
approach and philosophy. In the horizontal plane, the best gquality earth-rate
information is conveyed along the east—west axis, Earth-rate measured around
the north—-south axis is maximum for horizontal axis measurements, and hence
varies only second-order with first-order azimuthal drift, i.e., conveys zero
azimuthal drift information. Thus, we are led to the concept of using a single

gyro, oriented east-west, This is the basis of the one-axis alternate system.

Because of the rather simple theoretical structure, error effect analyses are
straightforward, the hardest part is deciding on a model of the kinds of errors
to consider. For completemess, we assume that there are random errors in
measuring the g, the g', and the e vectors, not necessarily uncorrelated. There
are seven variable errors to consider, namely, in el, e2 and e3, in gl and g2,
and in g’'1 end g’'2. g3 is assumed to vary only second-order around its nominal
value of 1, and isn’t measured. g'3, the time derivative of g3, is of course

also second order and is ignored.

It is convenient to discuss errors in terms of their main end effects. In this
case, the obviously crucial end effect is the misdefinition of the earth-fixed
reference frame, described by the orthogonmal triad i, j, and k, along east,
north, and upward vertical, The error end effect comprises small increments,
di, dj, and dk, respectively perpendicular to i, j, and k. The i, j, and k axes
are constructed from the computed wander-corrected unit vector earth spin axis,
s, and from the computed unit vertical vector, v. For k, we use v. Knowing the

latitude, L, we express s as:
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s = j%cos(L) + k*sin(L)

For j, we use the k-free component of s, normalized to mnity:

j = (s-k*(k.s))/cos(L)

(where ’''k.s’'’' denotes ’'’scalar product of vectors k and s’’)

For i, we simply vector-crossproduct j and k:

-
..
Ck i = (s x k)/cos(L)
-
l! The error in k is simply the error im v, conveniently expressed as
X .
- dk = dv = i*vl + jov2
o

The error in s is conveniently expressed in terms of east-west and meridional
- components, along i and along k®cos(L)-j*sin(L), respectively:

ds = i*sl + (k®cos(L)-j®*sin(L))*s2

e The errors in i, j, and k, in terms of dv and ds are
» di = ((ds x k) + (s x dv))/cos(L)
- dj = (ds - dv*(k.s) - k*(dv.s) - k*(k.ds))/cos(L)
- dk = dv
! L




These effects can be represented by a rotational error vector, z:

di zx i

dj =z x j
dk

zxk

z = —i®v2 + j*vl + k*(vi®sin(L)-s1)/cos(L)

The reference—frame errors depend on the two components, vl and v2, of the
vertical error and on the east-west component, sl, of the earth spinm axis

error. Since the meridional component of the earth spin is ignored, by relying
solely on the north-south component of the tiltmeters, s2 plays no role in the
error analysis, The rationale for so doing is the assumption that the tiltmeter
accuracy will be comsiderably better thanm the gyro accuracy, so any

inconsistency between tiltmeter readings and gyro readings (implying a false

value of latitude) is to be resolved in favor of the tiltmeters.

The error components vl, v2, and sl are simply:

vl = err(a2) = err(gl)
v2 = err(—al)= err(g2)
s1 = ~err(d1/R)
= gin(L)®err(gl) -cos(L)®err(a3) - (err(el) + err(g‘2))/R

tictentnillN ke aiiusinni

Substituting, the rotational error vector becomes:

z = —i®err(g2) + j®*err(gl)
+k*(err(a3) + (err(el) + err(g'2))/(R*cos(L)))
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If we use independently—generated values of earth spin axis deviation, or
multi-site averaging of vertical axis warp, we dispense with the theodolite

observations of landmarks, and the a3 contribution to z disappears, giving:

z = —i®err(g2) + j%err(gl)
+k*(err(el) + err(g’2))/(R®*cos(L))

This says that the tilt component of the rotational error (i.e., that part which
is around a horizontal axis), is due to the tilt measurement error
(crossproducted with the unit vertical), and that the azimuthal rotation
component is due to east-west axis rotational error, comprised of the sum of
gyro east-west axis rate measurement error and of east-west axis rate-of-tilt
measurement error. The foregoing results are completely in harmony with
intuition. The components of z around horizontal axes are governed simply and
solely by the tiltmeter errors. The c¢omponent of z arou.] the vertical axis has
the expected semsitivity to latitude. The errors in gl and g2 are respectively
east-west and north-south tilt errors, and that in g'’2 is the error in
determining the rate of change of north-south tilt. The error in el is the

error in measuring east-west rate.
GYRO PERFORMANCE REQUIREMENTS

Assume the performance is to be dominated by gyro random drift error. This is
justified by the high-quality state of the art in tiltmeters and by the fact
that we can remove the effect of gyro low frequency bias errors by indexing (as
well as tiltmeter bias effects). Then, the azimuthal component of the error

vector, z, wil be equal to:

z(az'1l) = err(el)®*secant(latitude)/earthrate

48
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The rms error in el will, under angle random walk (which is rate white noise),
be equal to the random walk coefficient divided by the square root of the time

of observation, giving:

z(az’1) = RW*SEC(L)/(R*SQRT(TAU))

where:
R¥W = Random drift coefficient, deg/rt-hr
L = Latitude
R = Earthrate, deg/hr

TAU = Time of observation, hr

Putting R = 15.0411%/hr, and assuming a measurement time of 16 hr, and

converting z(az'l) from radians to arc-seconds:

z(az’1)

20626 5*RW*SEC(L) /(15.0411%4)
3428*SEC(L) *RW arc-sec rms

Assuming that we want z(az’l) = 0.2 arc-sec, the random walk value needed to
achieve this is

RW 0.2*COS(L) /3428
0.000058*C0OS(L)deg/rt-hr

Thus, at the equator, we need a 0.000058 gyro. At latitude 45°, 0.00004 would
be needed.
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EXPECTED SYSTEM PERFORMANCE

The finite effects of bias instability and quantization are considered
explicitly as follows, With indexed readings takem over total time T, with each

indexed reading lasting time t, the total rms error angular error is given by

the expression:

SQRT(QS**2/ (t*T) + RW*s2/T + 3*(BI*t/T)**2)/(R*COS(LT))

\

where: X
QS = mms quantization/spillover = 0.024 arc-sec T

RW = Random walk coefficient = 0.00004°/rt-hr i

BI = Low frequency bias instability = 0.,0003% hr S

R = Earth rate = 15.0419/hr ;

LT = Latitude = 450 1

T = Total measurement time = 16 hr ' I

t = Indexation period

The gyro parameter values are from the experimental undithered gyro data

reported in Section 6. The only assumption is that dithered operation can be
enhanced to give the same random walk as undithered operation, using closed-
loop lockin correction (CLIC) to cancel out random errors accrued at each dither

reversal, as discussed in a later subsection (Gyro Modifications Needed).

Using the above numerical values, the rms error inm arc-sec, as a function of t,

is given by:

ms error = SQRT(0.001/t + 0.038 + 0.4%t¢*2)

This has a minimum value of 0.23 arc-sec at t = 0.11 hr, Therefore, the optimum

indexation rate is about 9 times per hour.
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HARDWARE REQUIREMENTS

Since only the el componment of rate error matters, it makes sense to minimize el
by using all the time available to take east-west rate readings. This suggests

that we need only an east-west gyro. An added benefit of using the gyro along a

nominally null-rate axis is that gyro scale-factor variability is not an issue. i
Similarly, tiltmeter scale factor variability is removed from the picture by

installing the tiltmeters nominally horizontal. y

Factors contributing to the error in determining the el compoment of the earth

spin vector are gyro bias error and gyro input axis error, as follows:
err(el) = dB + R*(dV*sin(L) + dH®cos(L)) ?

where: "

dB = Deviation of gyro bias rate from nominal
dV = Vertical deviation of gyro axis from nominal
dH = Borizontal deviation of gyro axis from nominal

If the deviations, though unknown, are constant over the observation pericd, we
can cancel their effects by taking indexed readings, pointing first east, then
west, and evaluating the east axis rate as the averaged east reading, minus the
averaged west reading, divided by 2. Indexing around the vertical axis will
cancel the error contributions from dB and dV. Indexing around the north-south
axis will cancel the error contributions from dB and dH, If the deviations are
time-variant, the benefits of indexing will depend on the dynamics of the time

variation,

Migh frequency bias variation is exemplified by ordinary gyro sngle random walk
i.,e., rate white noise, against which indexing has no effect. Hence, gyro

|
output angle random walk is a major driver in this application. Laser gyro 1
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input axis variation is believed to be of order 1 arc-sec and to vary very

slowly, with a time constant of hours, at least. Thus, indexing should greatly

dilute the dV contribution, probably to a negligible level.

Indexing introduces its own set of added errors, corresponding to the accuracy
and repeatability with which the indexed orientations are achieved. The
ULTRADEX commercial indexing device can index back and forth through 180° with
error of ( 1/8 arc—sec and repeatability better than 1/20 arc-sec, around the
index axis. The tilt error is ostensibly of order 1 to 2 arc-sec, and is some

variable blend of random from one index to the next and/or quasi-constant.

Any random compoment would be attenuated over N successive indexes, by a factor
of SQRT(N). Also, it ought to be possible to directly measure the tilt of the
ULTRADEX 'd upper surface (bearing the gyro and tiltmeters) relative to the lower
main stationary surface on which the ULTRADEX rests. In principle, sensitive
height gages could measure the elevation of the upper surface over the lower, at
four equi-spaced points around the rim of the upper surface. A trivial

calculation would yield the two—-axis relative tilt.

GYRO MODIFICATIONS NEEDED

With only one gyro, it is impractical to use kimematics such as are used in the
three—axis system, Three—axis rate information is a must for talleying compound
rotation. A one-axis system must keep the gyro in fixed, or highly constrained,
orientations to avoid uncomputability situations. But, the whole point of the
three-axis kinematics is to keep the gyros out of lockin. At very low input
rates, the laser gyro scale factor degrades to zero, resulting in output error.
So, some other kinematics must be used, which both keeps the gyro out of lockin
and preserves computability. The standard way of doing this is to oscillate the
gyro around its input axis, referred to as dithering the gyro. This avoids the

computability problems of compound motion, exemplified by coning errors.
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Dithering is conveniently done by mounting the gyro on a torsiomal spring
(oriented around the input axis) and driving the gyro in an angular sinusoidal

motion, typically a few hundred arc-sec peak—-to—peak, at a frequency of a few

hundred hertz.

Now, there is another problem. The dither oscillation goes to zero rate twice
every dither cycle, and during these brief instants, lockin effects cause the
gyro output to accrue small increments of error., Their rms value is a function
of intrinsic gyro lockin rate and of the time spanning each dither reversal
during which the angular dither rate is less than the lockin rate. Under
ordinary randomized dither, the errors accumulate to a random walk angular
output error. Typical dithered gyro random walks are 0.003, 0.001, and
0.00025%/rt-hr, for the GG1342, GG1300, and GG1389 Honeywell RLGs,

respectively, As far as we know, the GG1389 has the lowest ordinary-dither
random drift of any laser gyro in the world, but its value is still far too high

to enable subarc—-sec system performance.

Analytic modeling of the laser gyro has disclosed that the error increments
incurred across each dither reversal are, other things being equel, sinusoidal
functions of the nominal value of the gyro phase angle at the dither peak.
Under randomized dither (in which the dither amplitude varies slightly for each
successive dither peak), s random sequence of error increments is generated,

which adds to a random walk., This model has been confirmed by many experiments.

Observed random drifts agree very well with this model (which is is based on
approximating the sinusoidal dither near the peak as a parabola, and then
integrating the lockin equation to yield a pair of Fresnel integrals to
represent the error increment). So, it was a natural step to pursue the model
) further and find ways to reduce the random drift. The CLIC invention was the

result. This functions by controlling the dither in detail, in such a way that

the trig functions (sine and cosine) of the gyro phase angle values at the
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!I dither minimaxes sum to zero, rather than to an unbounded random walk. Then,
with the trig functions held to zero sum, the drift error will likewise become

bounded and low.

Upon implementing CLIC, gyro random drifts did decrease by a factor of up to
tenfold. VWith some exceptions, it appears that CLIC makes the gyro perform up
to the so—called quantum limit, as governed by the canomical uncertainty
equations of quantum mechanics. Quantum-limited performance is also approached
when the gyro is continuously rotated in ome direction. This has been shown
over five years of research and tests., The hoped-for value of 0.00004°/rt-hr is
about two times the calculated quantum limit. It seems reasonable to expect
this value from a (LIC-enhanced GG1389, especially since it has been achieved

under unidirectional rotation testing,

CLIC has a side benefit that is also vital to getting subarc-sec performance.
It provides enhanced angular resolution, to within ( 0.01 arc-sec, instead of
the usual laser gyro pulse weight quantization (1 arc-sec, for the GG1389).
This is done by the CLIC software for the original purpose of calculating gyro
drift error discriminant values., Without this feature, each of the indexed
readings taken would be corrupted by 1/SQRT(6) gyro pulses, i.e., 0.4 arc-sec
rms. FEven with only four readings per hour, this would generate added error of
0.00020°%/rt-hr. This would result in performance of 5 times spec, instead of
being almost in spec. But, with 0,01 arc-sec resolution, there would be

negligible added effect.

P

CLIC has been well developed and refined over the last five years and needs no

A S ]

further development, beyond putting it into a different gyro than the

.
- ]
LR

presently—used GG1342. This entails some hardware additions to the gyro dither
drive and readout, and simple changes in the sof tware—-mainly different values

of constants for gyro scale factor, dither frequency, drive scale factor, etc.
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SECTION 6

EXPERIMENTAL RESULTS

UNDITHERED GYRO RANDOM DRIFT CHARACTERISTICS

Having determined that a subarc-sec system would require random drifts of less

than 0.000045°/rt-hr, we see that only the Homeywell GG1389 RLG could meet this

goal, and then only when continuously rotated or, if dithered, only with CLIC,
Since we don’t have CLIC yet for the GG1389, we proceeded to concentrate on

rate-biased tests. These were done by mounting the GG1389 on our Goertz Series K

800 Direct-Drive Rate Table, with the input axis vertical, and rotating at 30 .
1
and 409/sec. 1

The table has bounded-error in its angular measurement, of a nature that is

readily dealt with by processing the output with a triangular filter. This
drastically attenuates the bounded spillover/quantization error of the table
readout, relative to the integrated white—noise angle random walk, and enables

measurement of very low random walks that would otherwise be completely obscured

by table bounded-error noise,

The original copious data stream obtained over 2° or 30 sectors of revolution
was compacted while being generated into a much smaller number of
triangular—-filtered one~-revolution data ensembles, which were stored in our Data
General computer. They were subsequently computer—processed to generate
variance plots, and best-fitted to a four-parameter curve, comprising residual
bounded error, angle random walk, bias instability, and rate random walk, as

defined by the values of the fitting coefficients,
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The only thing that has delayed the application of CLIC in systems is that it
depends on a computerized predictiom of how the imertial rotation input to the
gyro increments over onme dither cycle (about 3 msec, for the GG1342)., It needs
to know this to within 0.2 arc-sec, in order to gemerate the right amount of
modulation to change the next dither peak angle to a value that helps to keep
the aforesaid sums of trig functions bounded. So, if there’s noise in the
angular enviromment of order 0.2 arc-sec uncorrelated over 3 msec, CLIC will
break down, Because of this, CLIC is presently limited to benign environments,

such as in the laboratory, on a rigid mounting,

The angular environment in the situation being discussed here is (or can easily
be made so), an extremely benign onme. This is a perfect application for CLIC.

A (LIC-enhanced dithered laser gyro may be expected to give random drift
performance equal to that of elaborately carouseled undithered laser gyros.

Now, with no carouseling, one doesn’t need three gyros to sort out the
kinematics of compound rotations and to compute platform attitude. Rather, one
gyro is rigidly attached in a well-defined relationship to the surface being
measured. A one-gyro system may not be only equal to the three—axis systems, but

even better.

55




b S ARDA N

The results of this testing procedure are shown in Figures 10, 11 and 12. These
comprise tests on GG1389 gyro no. 003, done on three different days, at 409/sec
with 30 sector data, and at 30°/sec with 20 sector data. In all these tests,
the best fit is obtained with an angle random walk value of 0.000040°/rt-hr. We
therefore infer this as the official value of undithered angle random walk for
this gyro. This is close to meeting the requirements for the performance goal
of 0.2 arc—sec rms measurement error over 16 hr, defined in Section 2, and is
even lower than the value of 0.000045 assumed in Section 4 for the Dual-Freedom

System Analysis and Simulation, using GG1389s.

INPUT AXIS STABILITY TESTS

Gyro input axis stability is as important a factor as random drift in a
subarc—sec system, though of lesser relative importance in other kinds of

application. For this reason, there had been little formal investigation of

10 ~
UNDITHERED RANDOM DRIFT ANGLE CLUSTER ANALYSIS OF
[ GG1389 NO. 003, AT 40°/sec, WITH 3° SECTOR RAW DATA, 17 JANUARY 84

QUANTIZATION = (0.024 src-sec
RANDOM DRIFT = 0.00008%/root-hr
BIAS INSTABILITY = 0.00003%/Wr

s RATE RANDOM WALK 0.00020°/hr-root-he
RATE RAMP 0.0

ANGLE SIGMA (arc-sec)
[

0.01 ek s saaal g e caanal PPN | N RPN |

1 10 100 1000 10000

INTERVAL TIME (sec)

C o e ol at A

Figure 10. GG1389 Random Drift Analysis, 17 January 1984
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10 UNDITHERED RANDOM DRIFT ANGLE CLUSTER ANALYSIS OF GG1389

NO. 003, AT 38%/sec, WITH 2° SECTOR RAW DATA, 18 JANUARY 84

QUANTIZATION = 0.0215 wc-me
RANDOM DRIFT = 0.00004°/roet-hr
L BIAS INSTABILITY = 0,00015%/h
RATE RANDOM WALK = 0.0

RATE RAMP = 0.0002°Mr**2

rryvrr)

0.1

LERARALE |

ANGLE SIGMA (arc-sac)

[
[
|
\

\

.01 A a2 aaaal " aeaa aaaal PR R |

10 100 1000 10000
INTERVAL TIME (sec)

Figure 11, GG1389 Random Drift Analysis, 19 January 1984
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UNOITHERED RANDOM ORIFT ANGLE CLUSTER ANALYSIS OF
GG1389 NO. 003, AT 30%/sec, WITH 2° SECTOR RAW DATA, 20 JANUARY 84

QUANTIZATION = 0.022 arc-sec
RANDOM DRIFT = 0.00004%/ragt-he
BIAS INSTABILITY = 0.00030%n
RATE RANDOM WALK = 0.0

' RATE RAMP = 0.00075%he"*2

T ¢ rveeg T T

ANGLE SIGMA (arc-sec)

0.1

AR AR |

0.01 MU B S S U Pl el \

10 100 1000 10000
INTERVAL TIME (sec)

Figuore 12. GG1389 Random Drift Analysis, 20 January 1984
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laser gyro input axis stability. But recently, this situation has been

remedied. We did a series of tests between March and May 1984 on three GG1389
laser gyros. These tests indicated a most gratifying degree of input axis
stability, relative to the gyro block itself, with the worst component of the
worst gyro being only +0.04 arc—sec. This is the intrinsic limiting stability.
The input axis stability relative to the fixturing on which the gyros were
mounted ranged from 0.25 to 0.90 arc-sec, from remount to remount. This
emphasizes the need for carefully-made indexing fixtures for the one-axis

subarc-sec demonstrator umit.

The experimental configuration was as follows: the gyro was mounted on a
fixture with its input axis nominally in the horizontal plane. The fixture
itself was mounted on the Goertz table, with the latter having rotation around a
nominally vertical axis. The gyro was mounted on the fixture in four positionms,
indexed in 90° increments of rotation around the nominal gyro axis. The four
positions are denoted NA up, NA down, LA up, and LA down. LA and NA denote two
gyro body axes perpendicular to the nominal gyro axis (see Figures 13 and 14).
The gyro was operateu with dither on, and with angular input generated by
rotating the Goertz table through many revolutions, both clockwise and

counterclockwise.

Nominally, with the gyro axis perfectly orthogonal to the Goertz table rotation
axis, the only gyro output will be gyro bias and random walk, plus a small
contribution due to earth rate, seen as a sinusoidal signal, at the frequency of
rotation of the Goertz table, with an amplitude equal to horizontal-plane earth
rate (earth rate times cosine of latitude). But, with data taken over an
integral number of Goertz table rotations, the latter sums to zero. (Tkis
assumes a constant rate of rotation of the Goertz table, which is almost exactly

the case.)
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Figure 13. Input Axis Stability Test Set-Up, Side View

Tnns

! SPIN AXIS

' GOERTZ TABLE

/ \

Figure 14, Input Axis Stability Test Set-Up, Front View
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So, the output will comprise bias, plus random drift, plus a contribution due to

the gyro axis unit vector having a small component along the Goertz table
rotation axis unit vector. Using small angle approximations, the resulting
output per Goertz table revolution will equal the gyro scale factor, in
counts/revolution, times the compoment of the gyro axis along the Goertz axis,

times an adjustment for the earth rate component along the Goertz axis.

From the results of the eight runs, we can determine gyro bias, two components
of non-orthogonality of the gyro semsing axis to the LA-NA plane, and
nomrorthogonality between the normal to the LA-NA plane and the Goertz table
rotation axis., With this factor-of-two overdetemminacy, we can also form
estimates of the stability of the above four variables. The computations are

based on the following model of gyro input axis deviation.

Gyro axis umit vector, V, = I + perturbation, D. The values of D in the 4 gyro

orientations are

D(NAU) = JsGL+K*(MK+GN)

D(NAD) = -J*GL+K* (ME—-GN)

D(LAU) = ~J*GN+K*(MK+GL)

D(LAD) = J*GN+K*(MK-GL)
where:

I = nominal V, perpendicular to K
J = in~plane axis, perpendicular to I and K
K = Goertz rotation axis
GL = Component of D along LA body axis
GN = Component of D along NA body axis
MK = Component of tilt of indexing axis along K
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The one-revolution output that would bc seen along the Goertz axis at rate R is

CR = SF*(EV+R)/IR|
where:
SF = Gyro scale factor, in counts/revolution

EV = Component of earth rate along the Goertz axis

"
]

Rate of rotation around Goertz axis’
The gyro output over ome revolution will equal CR times the component of V along
the Goertz axis, plus gyro bias rate times the period of revolution times scale

factor:

GY = SF*BG*TAD/2°*PI + DK*CR

where:
GY = One-rev gyro output, in counts
BG = Bias rate of gyro, in radians per second
TAU = Period of revolution around Goertz axis, in seconds
DK = Component of D along Goertz axis
PI = 3,1415937022.....

The foregoing is applied as follows: the method will be exemplified by working

out the set of stability values for GG1389 gyro no. 011, using the measurements
taken for that gyro.

Fquating the expressions for the eight outputs to the values actually measured,

we get the following eight equations,
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GY(NAU, CCW) = BT + SF*(1+EPS)* (MK+GN)
GY(NAU,CW) = BT - SF*(1-EPS)*(MK+GN)
GY(NAD, CCW) = BT + SF*(1+EPS)*(MEK-GN)
GY(NAD,CW) = BT - SF*(1-EPS)*(MK-GN)
GY(LAU,CCW) = BT + SF*(1+EPS)* (MK+GL)
GY(LAU,CW) = BT - SF*(1-EPS)*(ME+GL)
GY(LAD, CCW) = BT + SF*(1+EPS)*(MK-GL)
GY(LAD,CW) = BT - SF*(1-EPS)*(MK-GL)
where:

BT = SF®BG®TAD/2*PI
EPS = EV/IR|

Using Equations 6-1 and 6-3:

BT+SF*(1+EPS)*MK = (110.159-19.560}/2

Using Equations 6-2 and 6-4:

BT-SF*(1-EPS)*MK = -45.,2600 counts

whereby

MK = 45.2798/SF

and

BT = 0.0198~45.2798%EPS
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110.159 counts
=110.600 counts
~19.560 counts
20.080
33.980
-33.580 counts
82.220
-81.700

counts

counts

counts

counts

= 45.2995 counts

(6-1)
(6-2)
(6-3)
(6-4)
(6-5)
(6-6)
(6-7)
(6-8)
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' On the other hand, we have
35
- Equations 6-5 and 6-7
o
e BT+SF*(1+EPS) *MK = 58.1000 counts
\:\
:.-:'_: Equations 6-6 and 6-8
) BT-SF*(1-EPS)*MK = -57.6400 counts
‘_'._'. whereby:
9 MK = 57.8700/SF
and

BT = 0.2300-57.8700*EPS
:.": Values of the constants are
’) SF = 1296000 counts/revolution
.“_".::: R = 309/sec
- EV = 10.63564°/hr at latitude 45° nporth
oy
( Hence, EPS = 10.63564/(30*3600) = 0.00009848
:j:.:‘ Therefore:
o
[) MK(1234) = 45.2798/1296000 rad = 7.20 arc-sec
i ME(5678) = 57.8700/1296000 rad = 8.10 arc-sec
1%
e
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-------------

iaenp n = 7'65 10.45 arc—sec,

BT(1234) = 0.0153*180%3600/1296000*PI = 0.0024 arc-sec
BT(5678) = 0.2300*180*3600/1296000*PI = 0.0370 arc-sec

i.e., BT = 0,020 +0.017 arc-sec.
Furthermore, subtracting Equation 6-3 from Equation 6-1,
GN(lé) = 64.859/ (SF*(1+EPS)) = 10.322 arc-sec
and subtracting Equation 6-4 from Eguatiom 6-2,
GN(24) = 65.320/(SF*(1-EPS)) = 10.397 arc-sec
i.e., GN = 10.360 +0.037 arc-sec.
Similarly, subtracting Equation 6-7 from 6-5,
GL(57) = —24.12/(SF*(1+4EPS)) = -3.838 arc-sec
and, subtracting Equation 6-8 from 6-6,
GL(68) = -24.06/(SF*(1-EPS)) = ~3.830 arc-séc
i.e., GL = -3,834 +0.004 arc-sec

The results for no. 011 are summarized in Table 2.
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TABLE 2. SHORT-TERM AXIS STABILITIES OF GG1389 NO., 011

Value in Variation
Term Arc-Sec in Arc-Sec
MK 7.65 +0.45
BT 0.020 +0.017
GN 10.360 +0.037
GL -3.834 +0.004

Ve saw a qualitative repeat of these results on numbers 009 and 004, That is,
very low variability in three terms, and relatively high variability in the tilt
of the fixture indexing axis, MK, This further strengthens the conjecture that
there is either aniso—sag of the gyro dither post under the cantilevered weight
load of the gyro (as between the set of NA up and down measurements and the set
of LA up and down measurements), or else aniso—flexure of the gyro base plate,
or even (less plausibly) aperture—connected bias shift due to aniso~sag effects

on the gyro mirrors, and hence on the location of the laser beam path triangle.

After the above tests, a series of tests were run over a three-day period,
comprising CCW and CW runs in the LA down orientation only. The results are

presented in Table 3.

=

-

a TABLE 3. MULTIDAY DATA OF GG1389 NO. 011

L

2 CCW CW Sum/2 Diff/4PI

O —

o Day 1 90.819 -89,920 0.450 14.38 I
Day 2 92.400 -91,401 0.500 14.63 |
b Day 3 92.440 -91.520 0.460 14.64 ‘
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The daily readings, when differenced, yield the sets of day-to-day differences
listed in Table 4,

TABLE 4. MULTIDAY STABILITIES OF GG1389 NO. 011

Delta—-Sum/2 Delta-Dif f/ 4%PI
Day 2 - Day 1: 0.05 0.15
Day 3 - Day 2: -0.04 0.01

Diff/4*PI represents the value of ME-GL, while Sum/2 represents BT. The above
data suggests that both MK (to do with aniso-sag, etc.), and the gyro i nsic

bias were rather stable over a three—day period, more so than was seen in gyros

1-009 and 1-004.

The counts/rev data for GG1389 gyro no. 009 are listed in Table 5.

TABLE 5. MULTI-ORIENTATION DATA FOR GG1389 NO. 009

NA up CCW 316.329
NA uwp CW -317.700
NA down CCW 298.698
NA down CW -300.060
LA uvp CCW 254.500
LA up CW -255.779
LA down CCW 366.423
LA down CW -367.962
67
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From these data, we computed the set of stabilities listed in Table 6.

TABLE 6. SHORT-TERM AXIS STABILITIES OF GG1389 NO. 009
Value in Variation
Term Arc—-Sec in Arc-Sec
MK 49.3 +0.25
BT -1.018 +0.007
GN 1.400 +0.005
GL -8.92 +0.02

Then, multiday stability data were taken, as presented in Table 7.

W W ..

TABLE 7. MULTIDAY DATA OF GG1389 NO. 009
ccw oW Sum/2 Diff/4*PI
Day 1 366.423 | -367.962 -0.77 58.44
Day 3 364.621 | -366.379 -0.88 58.17
Day 6 378.859 | -380.403 -0.77 60.42
Day 7 378.561 | -380.282 -0.86 60.39
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Plausibly, the multiday variation of +.05 arc—sec in the half sum suggests a
bias instability of order 0.000089/hr,
between Days 1 and 3 and between days 6 and 7 (0.27 and 0,03 arc-sec,

The small changes in the differences

respectively) are compatible with the one—day data stabilities listed in Table

6. The 2.2 arc~sec jump between Days 3 and 6 may be due to some shift in
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TABLE 8.

the mounting hardware, associated with shutting down for the weekend.

MULTI-ORIENTATION DATA FOR GG1389 NO. 004

NA
NA
NA
NA
LA
LA
LA
LA

up ccw
up cW
down CCW
down CW
up CcCcw
up CW
down CCW
down CVW

35.280
=36.000
198.740

-199.921

20.120
=21.420
236.979

-237.980

The mul tiday data obtained are presented in Table 9.

that are listed in Tables 10 and 11.

TABLE 9. MULTIDAY DATA OF GG1389 NO. 004
ccw cw Sum/2 Diff/ 4*PI
Day 1 240.040 -241.021 -0.490 38.28
Day 2 237.501 -238.478 -0.488 37.88
Y Day 3 234.681 -236.039 -0.679 37.46
<
-
8
-
¢ From the data in Tables 8 and 9, we infer the stabilities

The

GG1389 no. 004 was also tested, giving the one-rev data listed in Table 8.

for GG1389 no. 004
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TABLE 10. SHORT-TERM AXIS STABILITIES OF GG1389 NO. 004

Value in Variation
Term Arc-Sec in Arc-Sec
| ———— ——————————— |
MK 7.65 +0.45
BT 0.020 +0.017
GN 10.360 +0.,037
GL -3.834 +0.004

TABLE 11. MULTIDAY STABILITIES OF GG1389 NO. 004

Delta (Sum/2) Delta (Diff/4*PI)
Day 2 - Day 1 0.002 ~0.40
Day 3 - Day 2 -0.190 -0.42

TILTMETER CHARACTERISTICS

Since, in a one—axis system, the two tiltmeters could do ’'’2/3 of the job’'
(tilt around north and east), it is fitting to discuss tiltmeter
characteristics. Figure 15 shows (inferentially) the stability of the simple
bubble-level tiltmeter, as it existed in 1963, over a ome-year period. Two
bubble levels were placed along east-west and along north-south, for a total of
four. For clarity, the vertical scales were staggered, so that each of the four
ontputs could be clearly seen., The two pairs track each other very well. Apart
from some exceptional periods (notably, around Jume for the east-west pair) they
seem to track within a fraction of an arc-sec, perhaps within 0.1 arc-sec.
Whoever prepared this graph would have been a hero had he/she thought to plot
the differences between the tiltmeter pairs! Unfortunately, the dats records

are long gone,
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These were 1963 state—of—the—art bubble tiltmeters. There have been many
refinements since then, notably in the area of digitized readout mechanizations,
with accuracies quoted at 0.05 arc-ssc rms., Thus, it is reasonable to assume

that tiltmeter errors will RSS negligibly with gyro errors.
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SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

1. It looks marginally feasible to measure crustal rotation around the

vertical to an accuracy of 0.2 arc—-sec rms, over a period of 16 hr, using

either a three—axis navigator—type system, comprising three GG1389 laser
gyros, plus three accelerometers with special two—degree of freedom
carouselingt or a one—axis system, comprising one dithered CLIC-enhanced

[ GG1389 laser gyro, indexed between east and west, plus two tiltmeters,

2. It is impracticable to distinguish between crustal rotation displacement
around the vertical and EPA deviation along east-west using self-contained
measurements from a single apparatus at one site. Either a central station
determination of earth spin axis deviation must be made and applied to the

total apparatus reading, or possibly multisite averaging may be used.

The vertical axis component of the three—axis system angle sensing is

relatively useless, because it is randomwalk-driven without any

TRy T T T
.

possibility of correction from accelerometer ’'’'tilt’’' readings. Its error

E‘ is bounded only by conflicting rate information generated along the east

-

e axis,

-

5

:j 4, The two tilt components of earth crustal rotation (around north and east)

; can be readily and adequately measured by two tiltmeters. Gyros are needed

only to add information around the vertical.

5. The best deployment of gyro power is along east-west.
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6. The one—axis system would probably work at least as well as the three—axis

system, assuming that accurate indexing can be done.
RECOMMENDATIONS

Based on the results of this study and on our perceptions of AFGL’s needs, we ¢
recommend that AFGL initiate a program to design, build, and test a
transportable one—axis demonstrator. As well as showing (or disproving) i
feasibility, the demomnstrator prototype will indicate further areas to be

studied, refinements needed in the kinematics, added error sources, etc. It
will be the first transportable subarc-second crustal deviation measurement
device to be built, so all the data it gemerates will be of the utmost interest i

in guiding future development. .

Recommended Demonstrator Design

The proposed demonstrator is a single—axis indexed system with two tiltmeters
and a single GG1389 RLG. The sensors and their electronics are fized to a
platform that is mounted on a computer—driven ULIRADEX precision indexing
table. The outputs of all of the sensors will be continuously monitored via a
dedicated processor that will perform the algorithm calculation and output the
results to a graphics display, thus allowing continuous monitoring of the

performance of the system,

A block diagram of the demonstrator hardware is shown in Figure 16. The laser

gyro is mounted with its input axis nominally horizontal, in the plane of the
plate surface, along a direction that will be nominally east-west when
installed. Two tiltmeters are mounted to sense tilts around nominal east-west, a

and around nominal north-south. A block schematic of the electronics is given

in Figure 17.
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Figure 16. Block Diagram of Proposed Demonstrator Hardware
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Figure 17. Block Schematic of Demonstrator Electronics *
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The ULTRADEX indexing table is the platform to which all the sensors and their
electronics are fixed. This table is computer-precision controlled, with
position error of ¢ 1/8 arc—sec, and repeatability better than 1/20 arc-sec,
around the index axis. The rotation axis instability is nominally 1 to 2
arc-sec random. This latter component is attenuated over N successive indexes,
by a factor of SQRT(N). If this instability becomes a comcern, it would be
possible to measure the relative tilt angle between the top and bottom surfaces
of the platform and explicitly eliminate the effect of rotation axis
instability. This would entail using added high—stability tiltmeters. The
present system design does not include extra tiltmeters, but has expansion
capability to add them at a later date. In addition, the system will allow
changing to different RLGs with minimal modification, thereby facilitating

system performance upgrades as technology produces even better RLGs.

The computetion algorithm will be fed by the outputs of the sensors, and its
cycle will extend over each period between successive indexations. The results
of successive cycles will be appropriately filtered to yield a progressively
improved estimate of 1) crustal tilt around some horizontal plane axis, and 2)
combined east—west deviation of the polar axis and crustal rotation around the
vertical. The control and algorithm processor planned for use is the Hewlett-
Packard HP9826. This machine has been chosen for its interface capability to
physical sensors and for its straightforward high-order language operating
system. These factors will allow the control and algorithm software to be

written in a concise and efficient manner,

Demonstrator Features

Automated Operation—-Fully automatic data acquisition and control, allowing

unattended operation for extended periods of time.
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On-Line Calculation——Real-time calculation of combined polar axis deviation and

earth crustal rotation around the vertical, from the initial-condition state.

Portability-—Rugged design, combined with reasonable size and weight, to allow

easy transport to other laboratory sites for test and demonstration.

Reliability--RLG life and reliability have been clearly demonstrated in

commercial aircraft revenue service, with MIBF in excess of 50000 hr.
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APPENDIX A

ANALYSIS OF DUAL-FREEDOM ROTATIONAL STRATEGY
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where:

The matrix Cg can be expressed as the product of the matrix A (which relates
the gyro input axes to the system frame), and the matrix C (which relates the

ISA frame to the local-vertical reference axes). i

Cg = CA (A-3)

APPENDIX A

ANALYSIS OF DUAL-FREEDOM ROTATIONAL STRATEGY

ERROR MODEL

The following error model is assumed.

! = -C 82 (A—l)
8

8Y = C 82 - ¥xa (A-2)

¥ attitude error vector of orthogonal ISA system axes relative to an

earth-fixed frame
velocity error vector

nongravitation acceleration vector of ISA

C8 transformation matrix from gyro input axes to local-vertical
reference frame
Ca transformation matrix from orthogonal accelerometer input axes to
local-vertical reference frame
dw gyro output error vector
b5a accelerometer output error vector ]
1
The question is, how must t sensor assembly be rotated to cause attitude and i
velocity error to have a mea -alue of zero. |
9
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The total error in the gyro output (8w) can be decomposed in terms of bias,

scale factor, and misalignment errors as

-1
bw = 8A "o, + Kgy.g,i + hg (A-4)

where:

wr/j = inertial angular velocity of the ISA
/i = inertial angular velocity measured by the gyro triad

b = gyro bias error

8A~1 = error in transformation matrix from ISA axes to gyro axes

Kg = gyro scale factor error matrix

Putting Equations A-3 and A-4 into Equation A-1 yields:

t -1
¥ = ca(sA /4 + Kgg'g/i * hg)

1

caGA Yy . + KA le . +1b)
r/i g

/i —g

-1 -1
CAL(8A ~ + KSA ) I + hs] (A-5)

The effee¢t of gyro input axis misalignment on A"l can be expressed as

- mn ..1
- sal = E%ﬁ. (A-6)
9. il
- i=1
Eﬁf where the 8;'s are the gyro misalignment angles. The gyro scale factor error
;f - matrix, Ks. can also be explicitly defined as
P“"'_“‘
P K =diag (k.  k, k -
oo 8 8 ( gl g2 33) (A-7)
S
p .-
o
r-“-
e
f
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where the kgi's are the gyro scale factor errors and '‘diag’’ denotes a

diagonal matrix. Substituting Equations A-6 and A~7 into Equation A-5 gives:

<2 61 + diag (k81 32 )A > I _1_> (A-8)

The accelerometer output error is expressed as

I-é'

ba = Ka a+ ha (A-9)
where:
a = nongravitational acceleration expressed with components in the system
frame

by= accelerometer bias

and K, is a matrix that accounts for both misalignment and scale factor error

(the diagonal entries being scale factor errors and the off-diagonal entries
being misalignment errors). Since the accelerometer input axes nominally
coincide with the ISA system axes, the matrix C, in Equation A-2 can be

replaced by C, which allows Equation A-2 to be written as

E 5Y = CEa+b]-¥xa (A-10)

z

Fg CONDITIONS FOR COMMUTATION OF GYRO ERRORS

|
E; Referring to Figure A-1, we see that the angular rotation vector of the ISA can

:f be expressed as

o L |
{ W, ; = o, - By (A-11)

82

e e e e e e e e e e e e e s e e e e P ST BTG R S
.. B I P T N SRR L RN LRSI T LR

- . - - - - . . -~ - - . . a - . . -
e e e Ve e T T e e e e St e e v s PR e e e e =~ Y e e e et R PRI
P IR P PP O P W WU U S T U v S A U W S S S S TR VN AU I el ST PP ity TP R WO LA WA SO WP L " o O S S




a. Inertial frame b. ISA reference frame ¢. Outer gimbal reference frame

Figure A-1. Definition of Coordinate Frames

outer gimbal inertial rotation rate

inner gimbal inertial rotation rate

and the inertial rotational rate about the axis perpendicular to the two gimbal

axes is taken to be zero. The unit vector u; belongs to the triad (u,, Uy, u,)

attached to the outer gimbal, and u®3 belongs to the triad (uf;, w¥, uf3) that
defines the ISA axes. If these two triads are assumed coincident at t=0, the

subsequent transformation between them is defined by:




i S e

Ju
.2

L 1 L 4L
which allows the ISA rotation rate to be expressed as

: T * r r
@ ;= aCBl_l1 + aSBEz U, (A-13)
If the inertial reference triad (311. giz, 313) is also taken as being
coincident with the other two triads at t=0, the following is true.
- - r - r -
i 1 0 O u
4 -x
ui = 0 Ca -Sa u
=2 ¥
ui 0 Sa Ca u
=3 z
I L 4 o
Which, with Equation A-12, leads to the defining relationship for C:
e . —1 p— — o= -
i B r r
3, Cp Sg Y 5, 1,
i _ _ - T - r
1, = CaSB CaCB Sa B, =C 3,
sl -SaSp  SaCp  Ca| | uf 'S (A-14)
3 3 3
L anad _— — homes - . —

Using Equations A-13 and A-14 the attitude error propagation equation (A-8),

can be expressed as

Y= e, (A-15)
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where &g is the gyro error vector:

e = (5,6, ...6.k k k b b b ) (A-16)

=g 172 8) 8, B3 8 8, B,

and the elements of the matrix H are given by:

By = AL | (A-17)
k=1

in which fy(t) is the k th of M time-dependent functions, and the ay's are
constants that are functions only of the elements of the transformation

matrix A.

If all sensor errors are assumed constant over time T, then Equation A-15 can
be directly integrated:

T
¥ = | JHE(t)dt £ (A-18)

Furthermore, for ¥(T) to equal zero:

ofok(t)dt =0 k=1, 2, ....M (A-19)

The integrals of the fy(t) that appear in the solution of the attitude error
vector ¥ are defined in Table A-1, which shows that all of the functions to be
integrated depend only on the gimbal angles and rates. If the ISA inertial
rotation rates about the two gimbal axes are constant, sll of the integrals can
be evaluated explicitly. As an example, one of the Table A-1 integrals is

evaluated as follows.
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TABLE A-1.

INTEGRAL FUNCTIONS FOR ATTITUDE ERROR PROPAGATION

* The ratio (n) of inner to outer
gimbal rates that produces a
zero value of the integral over
the period of the outer gimbal
motion

- -_ L A

j?k(t)dt Acceptable Ratfo of
Gimbal Rates” N
jt:osgdt Al n
jsmm Alln
f Sinadt ANl n
¢
[~
§ E jCosadt All n
o wn
= <
E P jSthinadt n#tl
£
[- Y
z° f CosaSinadt All n
]smcosad: All n
jCascCOsadt nil
f aS1n28dt Al n
I&Simstnadt nfl
IECosaSInEdt All n
I&SimCosedt All n
2 jéCOSoCOSS“ All n
-
|
‘3 fasmzadc No n
e
e jaCoszadt No n
3
g r aSnaSingdt AN n
3 g Js
ad
5 s
- Cosasinladt AN
: g jo MMn
s . 2
- - aS1inaCos”gdt All n
23 f
> =
- f aCosaCosgdt All n
f&SMgSinngt A1l n
j&COSoSinstt All n
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m TABLE A-1. INTEGRAL FUNCTIONS FOR ATTITUDE ERROR PROPAGATION (comcluded)
jfkdt Acceptable Ratio of
Gimbal Rates
ﬁc::sedt Al n
Jestnaat AT1 n
“ -
o 8 [ostnaat ATl n
2
: ; é jBCosadt i All n
A 5 .
- 5 = jasmsinedt ntt
’: i O i
[ - e j 8CosaSingdt Al n
- s
| @ £s -
& g Jfestnacosat Al n
;j'-'. s &
- f aCosaCosgdt npl

revolution,

Pl Al A e at an N/ 4
1

- et - . . B TP R N S U R S S -
et DR . LT W e T - T O SR WP o
o a e e v L et e et ala e tata 8 Al Al Rl omtan® )l s el st

ofT&CosaSinzﬁdt =a OITCos&tSinzétdt

= 2| Teosaede - ITCos&tCoszétdt]
2 |o o

- T
= % Sim;.t:]
) - o
b .
{ L. : T
S a {Sin(e =28)t Sin(a + 2B8)t
¢ -
O 41 (a- 2 (& + 2p) 0
-::'fj.' Now, assume that the inmer gimbal rate is n times the outer gimbal rate, and
{: that the integration interval (T) is equal to the outer gimbal period of
[

Then, the integral can be evaluated as
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T in2dt = & Sin2y - 4 |S8in(i=2n ia{l%,
of aCosaSin fdt 2 Sin2n 4 (1-22) + (1+42n)

TN Y T Y R YL

4 = 0 for all integer N

All except two integrals in Table A-1 reduce to zero over ome outer gimbal

period, for integer N. The two exceptioms are

of'T aSin?Bdt and ofT aCos2pdt

both of which give aT/2 over the period T. But, by reversing the outer gimbal
rate after each successive revolution of 360°, these two give zero net over
intervals of 2T. The periodic reversal of @ has another benefit as well; it
causes every integral that has a as a factor to have a mean value of zero
(providing that any restriction on the ratio of gimbal rates is observed). The
result is that attitude error will tend to be more nearly zero-mean, which in

turn produces a lower growth of velocity error through the ¥ X a term.
CONDITIONS FOR COMMUTATION OF ACCELEROMETER ERRORS

The velocity error expressionm is

8V = We (A-20)

where g, is a vector formed from the accelerometer errors (bias, scale factor,

misalignment), and the elements of the matrix W take the general form:

'ij = k§1bk'k(t) (A-21)
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in which gx(t) is the k th of N time-dependent functions, and the by's are a

function of the components of nongravitational acceleration, a.

If all accelerometer errors are taken to be constant over an integration
interval T (the period of the outer gimbal motion), snd if the components of
nongravitational acceleration are also ossentially constant over T, Equation
A-20 has the solution:

SV(T) = ofTW(t)dt £, (A-22)

which produces a zero value if:

T
of g, (t)dt

[}
o

kslp 2, .coN

The integral functions that appear in the solution of the velocity error
equations are defined in Table A-2, some of which are the same as those
appearing in the attitude error equationms. As can be seen from Table A-2, all
but eight of the integrals can be made to produce a zero value at the end of
each complete revolution of the outer gimbal., However, since none of the
integrals associated with . vcelerometer errors involve the outer gimbal rate,
reversal of the outer gimbal motion will not produce a zero value at the end of
2T. Therefore, the contribution to velocity error represented by these eight
terms will be generally monotonic., The sccelerometer errors associated with
these integrals are scale factor and misalignment errors, and the integrals
are associated with error in the vertical direction (i.e., in the direction of

the gravity vector). Furthermore, the integrals:
[Sin2aCosBdt [Cos2aCospdt /Sin2aSinpdt

will not produce a zero value over T if the ratio of imnmer gimbal to outer

gimbal rate (n) is 2. Therefore, an n value of 3 or higher should be used.

89




:
;
!

TABLE A-2. INTEGRAL FUNCTIONS FOR VELOCITY ERROR PROPAGATION

Acceptable Ratio
fgk(t)dt of Gimbal Rates’
j Sinadt Al n
f Cosadt All n
j sinedt Al n
"
L 3
§ f Cosadt Al n
"
g z f SinaSinédt npl
bl
-§ § j SinaCossdt Al n
26
=% f Cosa$ ingdt AN n
& &
J CosaCosadt’ ngl
j $1n2adt All n
j sin2sdt AN n
J stn?oat ' Mo n
jCoszcdt No n
w
g jsmzm No n
. -
i § juszut No n
(-]
< 3 | stdsinoae Al n ,
i ,_
$ 3 [ stn?cassat ng2 ]
- : i
g % j Coszdinddt ANl o 1]
-~ 2 .-‘
g [ ) z ..‘
—:-' § j CosaCos 8dt - np2 ‘.1
° ‘-
[ stmsinZaar Al n ‘

® The ratio (n) of inner to outer gimbal rates that produces a 2ero
value of the integral over the period of the outer ¢gimbal motion

90

e
2n’e 2 a XEER XV D>

. -
D LI M et et e
s



Mgt av e a0 spnd S8 ZNGA Mo alae dese aoey gu A L e SR M A Bl St i el sinh oA e 0 -miAE ke e

=T ¥
s

MR TEFAITTCTTETE T Y ATl YA YR h I AR B B I Yy

TABLE A-2. INTEGRAL FUNCTIONS FOR VELOCITY ERROR PROPAGATION (concluded)

Acceptable Ratfo
of Gimbal Rates
fgk(t)dt
]Cos«Sinzsdt ANl n
f SincCoszsdt All n
-fcosatosaat AN 4
j $1n2aSingdt ng2 :
- .
s j $in2aCossdt All n i
3
S h
s j StnaSin2sdt AN n
*
=
3 Jeasastnasat Al n 3
[
S 2 <2
! I Sin“aSin“adt NOn
‘4
[ .
E jsmzd:oszadt Non ::
2 [ ]
'g. 2 2 :‘
oy
g : j Cos“aSin“gdt Non
2
- i ICoszaCoszsdt No n
22
>% 2
z3 Jsm aS1n2sdt Al n
f cos2asin2sdt Al n
j $1n2asinsdt Al n
f Sin2aCossdt AN n
jsm 2a51n28dt ngl
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APPENDIX B

NAVIGATION ERROR MODEL

The navigation error equations used as the basis for performance analysis are
defined in this appendix, together with a discretization procedure for

representing the error model in the form of difference equations.

The navigation error model assumed is s ''Y-angle’’ formulation, which is a
classic set of navigation error equations applied to either strapdown or
platform systems., The ’'’'Yy-angle’’ error model may be expressed in the

following form:

¥-e- G+ (B-1)
su=ec, -¥xal-(20+0 x8y-} R

+ 3«.2(55-5/3)5/1: + 8g (B-2)
3R = 8Y - p x 8R (B-3)

where:

Y = attitude error vector
8Y = velocity error vector
SR = position error vector

p = angular velocity vector of local vertical reference frame relative to

an earth-fixed frame

2 = angular velocity vector of the earth relative to an inertial frame
AL = vehicle nongravitational ascceleration
= radius vector from earth’s center to vehicle
= magnitude of R

wg = Schuler frequency = || g/R
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£g = 8yro output error vector

&a
8g = gravity error

accelerometer output error vector

and it is assumed that all vectors are expressed with components in a

local-vertical navigational reference frame.

The total gyro and accelerometer error vectors are expressed in terms of

individual sensor errors as

&g = CHx (B-4)
g = OGX, (B-5)
where:

Xy = vector of gyro errors (bias plus random noise)
Xa = vector of accelerometer errors (bias plus random noise)
C = transformation matrix relating inertial sensor assembly

reference frame to the local-vertical frame

G = coefficient matrix that transforms the collection of accelerometer
errors into a net acceleration error in the sonsor assembly reference
frame

H = coefficient matrizx that transforms the collection of gyro errors

into a net angular rate error in the sensor assembly reference frame
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If the inertial navigator is strapdown, then C is defined to be the direction
cosine matrix relating the vehicle body axes to the local-vertical frame, If
the inertial navigator is of the platform type, the matrix C is the identity
matrix. Thus, Equations B~1 through B~5 are applicable to both types of
navigation system, with the appropriate choice for the matrix C. The inertial
navigation system error equations given by Equations B-1 through B-5 can be

conveniently expressed in the generalized partitioned form:

Y~ |Fu Fpl X} 4+ |Gy O Y ' (B-6) |

I 0 Fpui|t 0 Gyl M |
where:

Y = vector of navigation errors

vector of sensor errors

154
]

It is desirable to discretize Equation B-6 in the partitioned form:
Y =ity Y005 T8 1

L Y E2_

where:
t1 and 2 are appropriate noise vectors.

The discretization of the sensor states normally presents no problem since it

is commonly assumed that sensor errors are adequately represented by either of

the following two forms

b =n - % (first-order Gauss-Markov process)

__‘_ b = q (random walk)
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where:

b = sensor bias
Tt = correlation time of process

white noise

=
(]

If the sensor error is a first—order Gauss—Markov process, the discrete

transition and noise variance parameters (9,[') are given by:
= o t/T
T= o2(1-e72t/7)
where o is the steady-state standard deviation, and ¢ is the transition time,

When the sensor error follows a random walk type variation, the parameters are

=1
[= Nt

where N is the spectral intensity of the white noise function, n and is

expressed in convenient units as

standard deviation of change 1 hour 2
N = 60

The navigation error transition matrix can be discretized by using a Piccard-
type expansion and then solving by numerical integration. The result is given
in Tables B-1 and B-2 for a comprehensive set of sensor errors. If, as in this
case, the gyro and accelerometer misalignments (non-orthogonalities) are given
as constant random errors, only mnine misalignment angles need be defined.

Ei ther the gyro triad or the accelerometer triad may be designated as
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the '‘reference’’ triad and assigned three misalignment angles, with six
misalignment angles for the remsining triad. In this study, the gyros have six

misalignment angles, and the accelerometers have three.

The discretization algorithms in Tables B-1 and B-2 are valid over times that
are small compared to the Schuler period and the semsor correlation times., The

transition and noise matrixes can be extended over any time by the chain rules:

¢(tn. t) =o ot ..t)

T
F(tn.to) -¢n[‘(tn_1.to)¢n +T a

where:
& p = incremental transition matrix for interval tp_g to ty
[n = incremental noise covariance matrix for interval tp 3 to ty

The covariance matrix, P, of the error states can be reconstructed at any time

from:
Pn = ¢( tnl to)Po¢T (tn' to) + F(tnl to)

The error model defined by Equations B—-1 thxough B-5 also applies, with minor
modification, to alignment and calibration. The principal difference is that
SR is a fixed error and has no variation with time. Also, since the error
equations presume small angles, a coarse level and azimuth alignment is implied

as a prerequisite for their use.
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In addition to the sensor biases, the mavigation error equations are driven by
(s . two additional sources of random error: 1) semsor random noise, and 2) gravity
. errors. These additionmal error sources are accounted for by means of the
incremental noise covariance matrix definmed in Table B-3. The white noise
originating from the gyros, as characterized by the spectral intensity matrix

Ng, leads to the attitude random walk. The white noise originating from the

accelerometers (absent in the present application) is characterized by the
spectral intensity matrix N, in Table B-3.
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TABLE B-3. NAVIGATION STATES NOISE COVARIANCE MATRIX

)] 1) SR
= renCldt | gy, = fq,,ATdt Qyq ® fQ,dt
Y g 127 M 13 12
Ogp * fhAaypdt Q3 = JAq)3dt
_ T ' T
921 = 932 + (fAqy,dt) + fagpdt |
+ (Na + Nv)t
q33 = fapdt F
= T = T T
931 * 913 932 = 923 + (fag3dt)
Ng = Spectral intensity matrix of gyro white noise
Na = Spectral intensity matrix of accelerometer white noise
Nv = Spectral intensity matrix of white noise originating in local- H
vertical frame due to gravity errors
C = Sensor to local vertical transformation matrix
L L]
o k
A 2, 0 -ay
L L

a%. a%, a% = local-vertical components of nongravitational acceleration
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SENSOR QUANTIZATION ERROR MODEL




APPENDIX C

SENSOR QUANTIZATION ERROR MODEL

The discrete output of inertial instruments causes an error due to
quantization. That is, if the true integral of the sensed rate or
acceleration over a given iteration interval is not equal to an integer number
of pulses, the fractional pulse will be ’’saved’’ and output over the next
interval. No fractional pulses are ever lost and the output of the instruments
could be accumulated indefinitely, with a maximum error of onme pulse. This

property povides the basis for mathematically defining quantization error.

Define the quantization error over the nth iteration interval as q,. Also,

define the accumulated quantization error as n,. Then:
Mnp = Mg-1 * 4 (C-1)
The cumulative quantization error, n,, constitutes a random uncorrelated

sequence with uniform distribution. Rearranging Equation C-1, the gquantization

-error over the nth iteration interval is expressed as

dn = Np ~ -1 (C-2)

Thus, quantization error is characterized as the difference between two

successive members of a random independent set.

ATTITUDE ERROR DUE TO GYRO QUANTIZATION

Consider attitude error in a rotational enviromment with the gyros skewed. The

attitude matrix differential equation for this casse is
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C = orthogonal direction cosine matrix
A = transformation matrix from skewed sensor axes to a set of orthogonal
sensor reference axes

w = angular rate measured by gyros

and (v} demotes a skew-symmetric matrix formed from the components of a

vector V.

The discrete algorithm for updating Equation C-3 is

) L2 -
c=c., [1 + (A9} + 2“‘9 +:| (C-4)
where:
ta
0= j wdt (C-%5)
t
n-1

Directly from Equation C-4, the error in C is
8¢, = scrl[x + (A9} + %{A§}2+ ]
+C 4 [mg + ‘}{MQ} (AG) + lz*u\g}(ugl + ] (C-6)
where $0 is the error in the incremental gyro output defined by Equation C-5.

Since gyro quantization error can only cause s rotational error, the erroneous

C matrix can be expressed as

A vile
n =[] - ('h] a (C-7)
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= misalignment angle vector

= erroneous C Matrix

From Equation C-7, the error in C can be expressed as

8C = —[‘_l'n}cn (C-8)

Substituting Equations C-8 and C-4 into C-6 results in:
¥ c, = ti’n_llcn_l[l + (A9 + 2a@y? + ]
-Cn[l-[AQ} + %(Aglz-b..] EA&Q} + Lasgr @) + 20a0) {A69}+..J (c-9)
Using the identity:
{a} {b) -(b}(a) = (axb} = ((a}b)

and neglecting higher-order terms, Equation C-9 reduces to:

(¥} =l¥p-1) - c.,EAbQ -1/2({A§]A5_Qﬂ c,T (C-10)
which, in vector form, is expressed as

¥y = ¥ gy -Cohs® (c-11)
where En is defined as

Cn== Cn [I-I/ZIA_QH

and may be taken to be the true value of C at the midpoint of the ianterval,

{
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Equation C-11 defines a generalized recursive relationship for sttitude error

propagation which, when 58 represents gyro quantization error, takes the

specific form:
!n = ‘!n—l - an (n'q—nq-l)
Equation (C-12) can be expanded as
¥ =
~n ClAnl
+C2A1|2- -( Cz-Cl) +C1:I Anl
+C3An3- _( C3-Cz) +CJ Anz

+...

+CnAnn- (cn-cn-l ) +cn—1] A%—l

which, after cancellations, reduces to:

- -1
£ = Cn, - I Aty
where

ACj—q = €4 - Ci1

The covariance of ¥ is determined directly from Eguation C-13 as

n-1
T, .7 aaTe T.2 T T ..T2
1-:(!’n ‘Ln) C AA cn ol * {54AC, A7 AC oy

where:

0'2 = E(n nT)

(C-12)

(C-13)

(C-14)
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Equation C-14 indicates that gyro quantization produces a bounded attitude
error (first term), plus an unbounded error component (second term). The
unbounded component will grow at a rate proportional to the rotatiomal velocity

of the gyro triad,

Another form for expressing attitude error growth, which is more convemient for

covariance analysis, is given by the equation set:

!n = annn * !n-l
(C-15)
B, = By TACH,

which is simply a rearrangement of Equation C-13 with the summation expressed

recursively.

VELOCITY ERROR DUE TO GYRO AND ACCELEROMETER QUANTIZATION

The computed direction cosine matrix, C, is used to transform accelerations

measured in the accelerometer axes into components in the reference frame:

¥V = c (C-16)
where:

V = velocity in reference frame

a = measured acceleration in sensor frame,

— .

It is assumed that the accelerometers form an orthogonal triad that coincides

with the orthogonal gyro reference axes,

.
A A e e e s A— .
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A discrete algorithm for updating Equation C-16 is
LA S Coln (c-17)

where v, is the incremental accelerometer output, and C is the direction cosine
matriz at the midpoint of the computatiomal interval. The error imcurred in

accumulating velocity is

8V 8y + 86Cv + Cby
-1

i o | on na
= 5Xn-l - [!n}cn!'n * cns-v'n
¥ * }
= 6¥11-1 ¥4 + Cnsxn

B I w. R

; =8y, + (x) ¥+coy (C-18)
h where:

= -

- !t =Cyv

- n nn

.

and where the misalignment vector ¥ is defined as
‘!n = 1/2(‘!n+ _‘L’n_l)
which, for all practical purposes, is accurately approzimated by En -‘_V_n.

P;Zj Equation C~-18 can be decomposed into two parts (to separate the coatributions
:‘;‘_'- due to gyro and accelerometer quantization errors) as follows.
- : a a =
_' 8Y =28Y , + Cobv (c-19)
;x‘. : ' 4 8 £

L sy; =8y . ¢+ (v} ¥ (C-20)
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Thus, the effect of accelerometer quantization on velocity error has exactly
the same form as the effect of gyro quantization error om attitude error. The
only difference is that, becaunse the gyros are taken to be skewed, the attitude
error equation involves the transformation matrix A, By omitting A and making
the substitution (8V*-»¥) Equations C-13, C-14, and C-15 are immediately

applicable to accelerometer quantization error propagation.

The complete model of gyro and accelerometer quantization effects is summarized
in Figure C-1. The model is recursive and operates at the attitude and

velocity update frequency.

COVARIANCE ANALYSIS MODEL FOR PROPAGATION OF QUANTIZATION ERRORS

For covariance analysis, we need to express the effect of sensor quantization
error over periods of time much longer than the iteratiom interval of the
update equations. The covariance matrix can be determined by solving the

discrete covariance equation

9 - »
’lk ckA - fh
Ac,a 9 2 || o
]
”: —_— Cy I~ a—vk
S T = ATTITUDE AND VELOCITY UPDATE INTERVAL
-Ts
—a0 T M n). 7} = UNCORRELATED NOISE SEQUENCES

Figure C-1, Deterministic Model of Quantizatiom Induced Error
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Pn = ¢npn—1¢n + Qn (C-21)

for the error model defined by Figure C-1. The evaluation of Equation C-21 is

straightforward and results in the solution given in Figure C-2. For

convenience, the summations can be replaced by continumous integrations,

assuming that the variations in vT are relatively smooth. Then, we can write:
n-1 =T T

£ AC.AATTAC. =T [ CAA C dt
k'=1 k K [+}

tataleta’st sl o R 2"

=T
- 1f ClAw)AAT (Aw) TcTate

where T is the update interval.

The covariance solution given by Figure C-2 defines the variances and cross
covariances of the errors due to sensor quantization over any length of time.
In practice, the solution is carried out only over periods of time equal to the i
discretization interval of the error equations. The noise covariance matrices
E(ﬂa‘). E(¥ SY_T). and E(8Y5VT) then provide the statistical description of a
discrete uncorrelated input to the navigation error equations over the

interval. After each successive discretization interval, the solution inherent

in Figure C-2 is started anew,
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